BERTopic_teyakkuzhaber

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_teyakkuzhaber")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 4
  • Number of training documents: 2382
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 depremde - yu - vatandas - kaybedem - sondaki 28 -1_depremde_yu_vatandas_kaybedem
0 alıs - kılıc - abd - yas - kars 1 0_alıs_kılıc_abd_yas
1 osmaniye - endonezya - konya - sondakika - adıyaman 2323 1_osmaniye_endonezya_konya_sondakika
2 984tl - 971tl - 1093tl - kırılmaya - anlık 30 2_984tl_971tl_1093tl_kırılmaya

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
5
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.