Edit model card

BERTopic_teyakkuzhaber

This is a BERTopic model. BERTopic is a flexible and modular topic modeling framework that allows for the generation of easily interpretable topics from large datasets.

Usage

To use this model, please install BERTopic:

pip install -U bertopic

You can use the model as follows:

from bertopic import BERTopic
topic_model = BERTopic.load("sdantonio/BERTopic_teyakkuzhaber")

topic_model.get_topic_info()

Topic overview

  • Number of topics: 4
  • Number of training documents: 2382
Click here for an overview of all topics.
Topic ID Topic Keywords Topic Frequency Label
-1 depremde - yu - vatandas - kaybedem - sondaki 28 -1_depremde_yu_vatandas_kaybedem
0 alıs - kılıc - abd - yas - kars 1 0_alıs_kılıc_abd_yas
1 osmaniye - endonezya - konya - sondakika - adıyaman 2323 1_osmaniye_endonezya_konya_sondakika
2 984tl - 971tl - 1093tl - kırılmaya - anlık 30 2_984tl_971tl_1093tl_kırılmaya

Training hyperparameters

  • calculate_probabilities: False
  • language: None
  • low_memory: False
  • min_topic_size: 10
  • n_gram_range: (1, 1)
  • nr_topics: None
  • seed_topic_list: None
  • top_n_words: 10
  • verbose: False
  • zeroshot_min_similarity: 0.7
  • zeroshot_topic_list: None

Framework versions

  • Numpy: 1.23.5
  • HDBSCAN: 0.8.38.post1
  • UMAP: 0.5.6
  • Pandas: 2.2.2
  • Scikit-Learn: 1.5.1
  • Sentence-transformers: 3.0.1
  • Transformers: 4.44.2
  • Numba: 0.60.0
  • Plotly: 5.24.0
  • Python: 3.10.12
Downloads last month
3
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.