Introduction
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). It was fine-tuned using PlanTL-GOB-ES/roberta-base-bne
.
Feature | Description |
---|---|
Name | bne-spacy-corgale-ner-es |
Version | 0.0.2 |
spaCy | >=3.5.2,<3.6.0 |
Default Pipeline | transformer , ner |
Components | transformer , ner |
Label Scheme
View label scheme (4 labels for 1 components)
Component | Labels |
---|---|
ner |
LOC , MISC , ORG , PER |
Usage
You can use this model with the spaCy pipeline for NER.
import spacy
from spacy.pipeline import merge_entities
nlp = spacy.load("bne-spacy-corgale-ner-es")
nlp.add_pipe('sentencizer')
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. Si te metes en el Franco desde la Alameda, vas hacia la Catedral. Y allí precisamente es Santiago el patrón del pueblo."
ner_pipe = nlp(example)
print(ner_pipe.ents)
for token in merge_entities(ner_pipe):
print(token.text, token.ent_type_)
Dataset
ToDo
Model performance
entity | precision | recall | f1 |
---|---|---|---|
LOC | 0.985 | 0.987 | 0.986 |
MISC | 0.862 | 0.865 | 0.863 |
ORG | 0.938 | 0.779 | 0.851 |
PER | 0.921 | 0.941 | 0.931 |
micro avg | 0.971 | 0.972 | 0.971 |
macro avg | 0.926 | 0.893 | 0.908 |
weighted avg | 0.971 | 0.972 | 0.971 |
- Downloads last month
- 4
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Evaluation results
- NER Precisionself-reported0.972
- NER Recallself-reported0.973
- NER F Scoreself-reported0.973