Update README.md
Browse files
README.md
CHANGED
@@ -14,29 +14,41 @@ model-index:
|
|
14 |
name: NER
|
15 |
type: token-classification
|
16 |
metrics:
|
17 |
-
- name: NER Precision
|
18 |
type: precision
|
19 |
-
value: 0.
|
20 |
-
- name: NER Recall
|
21 |
type: recall
|
22 |
-
value: 0.
|
23 |
-
- name: NER F Score
|
24 |
type: f_score
|
25 |
-
value: 0.
|
26 |
---
|
27 |
|
28 |
# Introduction
|
29 |
|
30 |
-
spaCy NER model for Spanish trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
|
31 |
|
32 |
| Feature | Description |
|
33 |
| --- | --- |
|
34 |
| **Name** | `es_spacy_ner_cds` |
|
35 |
| **Version** | `0.0.1a` |
|
36 |
| **spaCy** | `>=3.4.3,<3.5.0` |
|
37 |
-
| **Pipeline** | `tok2vec`, `ner` |
|
38 |
| **Components** | `tok2vec`, `ner` |
|
39 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
## Usage
|
41 |
|
42 |
You can use this model with the spaCy *pipeline* for NER.
|
@@ -61,13 +73,12 @@ for token in merge_entities(ner_pipe):
|
|
61 |
|
62 |
ToDo
|
63 |
|
64 |
-
|
65 |
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
macro avg|0.910|0.831|0.867
|
|
|
14 |
name: NER
|
15 |
type: token-classification
|
16 |
metrics:
|
17 |
+
- name: NER Precision
|
18 |
type: precision
|
19 |
+
value: 0.9648998822
|
20 |
+
- name: NER Recall
|
21 |
type: recall
|
22 |
+
value: 0.9603751465
|
23 |
+
- name: NER F Score
|
24 |
type: f_score
|
25 |
+
value: 0.9626321974
|
26 |
---
|
27 |
|
28 |
# Introduction
|
29 |
|
30 |
+
spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
|
31 |
|
32 |
| Feature | Description |
|
33 |
| --- | --- |
|
34 |
| **Name** | `es_spacy_ner_cds` |
|
35 |
| **Version** | `0.0.1a` |
|
36 |
| **spaCy** | `>=3.4.3,<3.5.0` |
|
37 |
+
| **Default Pipeline** | `tok2vec`, `ner` |
|
38 |
| **Components** | `tok2vec`, `ner` |
|
39 |
|
40 |
+
### Label Scheme
|
41 |
+
|
42 |
+
<details>
|
43 |
+
|
44 |
+
<summary>View label scheme (4 labels for 1 components)</summary>
|
45 |
+
|
46 |
+
| Component | Labels |
|
47 |
+
| --- | --- |
|
48 |
+
| **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
|
49 |
+
|
50 |
+
</details>
|
51 |
+
|
52 |
## Usage
|
53 |
|
54 |
You can use this model with the spaCy *pipeline* for NER.
|
|
|
73 |
|
74 |
ToDo
|
75 |
|
76 |
+
### Accuracy
|
77 |
|
78 |
+
| Type | Score |
|
79 |
+
| --- | --- |
|
80 |
+
| `ENTS_F` | 96.26 |
|
81 |
+
| `ENTS_P` | 96.49 |
|
82 |
+
| `ENTS_R` | 96.04 |
|
83 |
+
| `TOK2VEC_LOSS` | 62780.17 |
|
84 |
+
| `NER_LOSS` | 34006.41 |
|
|