sdocio commited on
Commit
284a82f
1 Parent(s): 9190b79

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +28 -17
README.md CHANGED
@@ -14,29 +14,41 @@ model-index:
14
  name: NER
15
  type: token-classification
16
  metrics:
17
- - name: NER Precision (micro avg)
18
  type: precision
19
- value: 0.963
20
- - name: NER Recall (micro avg)
21
  type: recall
22
- value: 0.958
23
- - name: NER F Score (micro avg)
24
  type: f_score
25
- value: 0.961
26
  ---
27
 
28
  # Introduction
29
 
30
- spaCy NER model for Spanish trained in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
31
 
32
  | Feature | Description |
33
  | --- | --- |
34
  | **Name** | `es_spacy_ner_cds` |
35
  | **Version** | `0.0.1a` |
36
  | **spaCy** | `>=3.4.3,<3.5.0` |
37
- | **Pipeline** | `tok2vec`, `ner` |
38
  | **Components** | `tok2vec`, `ner` |
39
 
 
 
 
 
 
 
 
 
 
 
 
 
40
  ## Usage
41
 
42
  You can use this model with the spaCy *pipeline* for NER.
@@ -61,13 +73,12 @@ for token in merge_entities(ner_pipe):
61
 
62
  ToDo
63
 
64
- ## Model performance
65
 
66
- entity|precision|recall|f1
67
- -|-|-|-
68
- PER|0.942|0.890|0.915
69
- ORG|0.869|0.688|0.768
70
- LOC|0.975|0.987|0.981
71
- MISC|0.854|0.757|0.803
72
- micro avg|0.963|0.958|0.961
73
- macro avg|0.910|0.831|0.867
 
14
  name: NER
15
  type: token-classification
16
  metrics:
17
+ - name: NER Precision
18
  type: precision
19
+ value: 0.9648998822
20
+ - name: NER Recall
21
  type: recall
22
+ value: 0.9603751465
23
+ - name: NER F Score
24
  type: f_score
25
+ value: 0.9626321974
26
  ---
27
 
28
  # Introduction
29
 
30
+ spaCy NER model for Spanish trained with interviews in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC).
31
 
32
  | Feature | Description |
33
  | --- | --- |
34
  | **Name** | `es_spacy_ner_cds` |
35
  | **Version** | `0.0.1a` |
36
  | **spaCy** | `>=3.4.3,<3.5.0` |
37
+ | **Default Pipeline** | `tok2vec`, `ner` |
38
  | **Components** | `tok2vec`, `ner` |
39
 
40
+ ### Label Scheme
41
+
42
+ <details>
43
+
44
+ <summary>View label scheme (4 labels for 1 components)</summary>
45
+
46
+ | Component | Labels |
47
+ | --- | --- |
48
+ | **`ner`** | `LOC`, `MISC`, `ORG`, `PER` |
49
+
50
+ </details>
51
+
52
  ## Usage
53
 
54
  You can use this model with the spaCy *pipeline* for NER.
 
73
 
74
  ToDo
75
 
76
+ ### Accuracy
77
 
78
+ | Type | Score |
79
+ | --- | --- |
80
+ | `ENTS_F` | 96.26 |
81
+ | `ENTS_P` | 96.49 |
82
+ | `ENTS_R` | 96.04 |
83
+ | `TOK2VEC_LOSS` | 62780.17 |
84
+ | `NER_LOSS` | 34006.41 |