|
--- |
|
language: es |
|
license: gpl-3.0 |
|
tags: |
|
- PyTorch |
|
- Transformers |
|
- Token Classification |
|
- roberta |
|
- roberta-base-bne |
|
widget: |
|
- text: "Fue antes de llegar a Sigüeiro, en el Camino de Santiago." |
|
- text: "Si te metes en el Franco desde la Alameda, vas hacia la Catedral." |
|
- text: "Y allí precisamente es Santiago el patrón del pueblo." |
|
model-index: |
|
- name: es_trf_ner_cds_bne-base |
|
results: [] |
|
--- |
|
|
|
# Introduction |
|
|
|
This model is a fine-tuned version of [roberta-base-bne](https://huggingface.co/PlanTL-GOB-ES/roberta-base-bne) for Named-Entity Recognition, in the domain of tourism related to the Way of Saint Jacques. It recognizes four types of entities: location (LOC), organizations (ORG), person (PER) and miscellaneous (MISC). |
|
|
|
## Usage |
|
|
|
You can use this model with Transformers *pipeline* for NER. |
|
|
|
```python |
|
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("es_trf_ner_cds_bne-base") |
|
model = AutoModelForTokenClassification.from_pretrained("es_trf_ner_cds_bne-base") |
|
|
|
example = "Fue antes de llegar a Sigüeiro, en el Camino de Santiago. Si te metes en el Franco desde la Alameda, vas hacia la Catedral. Y allí precisamente es Santiago el patrón del pueblo." |
|
ner_pipe = pipeline('ner', model=model, tokenizer=tokenizer, aggregation_strategy="simple") |
|
|
|
for ent in ner_pipe(example): |
|
print(ent) |
|
``` |
|
|
|
## Dataset |
|
|
|
ToDo |
|
|
|
## Model performance |
|
|
|
entity|precision|recall|f1 |
|
-|-|-|- |
|
LOC|0.986|0.982|0.984 |
|
MISC|0.800|0.911|0.852 |
|
ORG|0.896|0.779|0.833 |
|
PER|0.953|0.937|0.945 |
|
micro avg|0.967|0.971|0.969 |
|
macro avg|0.909|0.902|0.903 |
|
weighted avg|0.968|0.971|0.969 |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 5e-05 |
|
- train_batch_size: 32 |
|
- eval_batch_size: 8 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 3.0 |
|
|
|
### Framework versions |
|
|
|
- Transformers 4.28.1 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.12.0 |
|
- Tokenizers 0.13.3 |
|
|