Textvodeoslashai_v1 / trainer.py
sejamenath2023's picture
Upload 12 files
239ee43
import os
import time
import copy
from pathlib import Path
from math import ceil
from contextlib import contextmanager, nullcontext
from functools import partial, wraps
from collections.abc import Iterable
import torch
from torch import nn
import torch.nn.functional as F
from torch.utils.data import random_split, DataLoader
from torch.optim import Adam
from torch.optim.lr_scheduler import CosineAnnealingLR, LambdaLR
from torch.cuda.amp import autocast, GradScaler
import pytorch_warmup as warmup
from imagen_pytorch.imagen_pytorch import Imagen, NullUnet
from imagen_pytorch.elucidated_imagen import ElucidatedImagen
from imagen_pytorch.data import cycle
from imagen_pytorch.version import __version__
from packaging import version
import numpy as np
from ema_pytorch import EMA
from accelerate import Accelerator, DistributedType, DistributedDataParallelKwargs
from fsspec.core import url_to_fs
from fsspec.implementations.local import LocalFileSystem
# helper functions
def exists(val):
return val is not None
def default(val, d):
if exists(val):
return val
return d() if callable(d) else d
def cast_tuple(val, length = 1):
if isinstance(val, list):
val = tuple(val)
return val if isinstance(val, tuple) else ((val,) * length)
def find_first(fn, arr):
for ind, el in enumerate(arr):
if fn(el):
return ind
return -1
def pick_and_pop(keys, d):
values = list(map(lambda key: d.pop(key), keys))
return dict(zip(keys, values))
def group_dict_by_key(cond, d):
return_val = [dict(),dict()]
for key in d.keys():
match = bool(cond(key))
ind = int(not match)
return_val[ind][key] = d[key]
return (*return_val,)
def string_begins_with(prefix, str):
return str.startswith(prefix)
def group_by_key_prefix(prefix, d):
return group_dict_by_key(partial(string_begins_with, prefix), d)
def groupby_prefix_and_trim(prefix, d):
kwargs_with_prefix, kwargs = group_dict_by_key(partial(string_begins_with, prefix), d)
kwargs_without_prefix = dict(map(lambda x: (x[0][len(prefix):], x[1]), tuple(kwargs_with_prefix.items())))
return kwargs_without_prefix, kwargs
def num_to_groups(num, divisor):
groups = num // divisor
remainder = num % divisor
arr = [divisor] * groups
if remainder > 0:
arr.append(remainder)
return arr
# url to fs, bucket, path - for checkpointing to cloud
def url_to_bucket(url):
if '://' not in url:
return url
_, suffix = url.split('://')
if prefix in {'gs', 's3'}:
return suffix.split('/')[0]
else:
raise ValueError(f'storage type prefix "{prefix}" is not supported yet')
# decorators
def eval_decorator(fn):
def inner(model, *args, **kwargs):
was_training = model.training
model.eval()
out = fn(model, *args, **kwargs)
model.train(was_training)
return out
return inner
def cast_torch_tensor(fn, cast_fp16 = False):
@wraps(fn)
def inner(model, *args, **kwargs):
device = kwargs.pop('_device', model.device)
cast_device = kwargs.pop('_cast_device', True)
should_cast_fp16 = cast_fp16 and model.cast_half_at_training
kwargs_keys = kwargs.keys()
all_args = (*args, *kwargs.values())
split_kwargs_index = len(all_args) - len(kwargs_keys)
all_args = tuple(map(lambda t: torch.from_numpy(t) if exists(t) and isinstance(t, np.ndarray) else t, all_args))
if cast_device:
all_args = tuple(map(lambda t: t.to(device) if exists(t) and isinstance(t, torch.Tensor) else t, all_args))
if should_cast_fp16:
all_args = tuple(map(lambda t: t.half() if exists(t) and isinstance(t, torch.Tensor) and t.dtype != torch.bool else t, all_args))
args, kwargs_values = all_args[:split_kwargs_index], all_args[split_kwargs_index:]
kwargs = dict(tuple(zip(kwargs_keys, kwargs_values)))
out = fn(model, *args, **kwargs)
return out
return inner
# gradient accumulation functions
def split_iterable(it, split_size):
accum = []
for ind in range(ceil(len(it) / split_size)):
start_index = ind * split_size
accum.append(it[start_index: (start_index + split_size)])
return accum
def split(t, split_size = None):
if not exists(split_size):
return t
if isinstance(t, torch.Tensor):
return t.split(split_size, dim = 0)
if isinstance(t, Iterable):
return split_iterable(t, split_size)
return TypeError
def find_first(cond, arr):
for el in arr:
if cond(el):
return el
return None
def split_args_and_kwargs(*args, split_size = None, **kwargs):
all_args = (*args, *kwargs.values())
len_all_args = len(all_args)
first_tensor = find_first(lambda t: isinstance(t, torch.Tensor), all_args)
assert exists(first_tensor)
batch_size = len(first_tensor)
split_size = default(split_size, batch_size)
num_chunks = ceil(batch_size / split_size)
dict_len = len(kwargs)
dict_keys = kwargs.keys()
split_kwargs_index = len_all_args - dict_len
split_all_args = [split(arg, split_size = split_size) if exists(arg) and isinstance(arg, (torch.Tensor, Iterable)) else ((arg,) * num_chunks) for arg in all_args]
chunk_sizes = num_to_groups(batch_size, split_size)
for (chunk_size, *chunked_all_args) in tuple(zip(chunk_sizes, *split_all_args)):
chunked_args, chunked_kwargs_values = chunked_all_args[:split_kwargs_index], chunked_all_args[split_kwargs_index:]
chunked_kwargs = dict(tuple(zip(dict_keys, chunked_kwargs_values)))
chunk_size_frac = chunk_size / batch_size
yield chunk_size_frac, (chunked_args, chunked_kwargs)
# imagen trainer
def imagen_sample_in_chunks(fn):
@wraps(fn)
def inner(self, *args, max_batch_size = None, **kwargs):
if not exists(max_batch_size):
return fn(self, *args, **kwargs)
if self.imagen.unconditional:
batch_size = kwargs.get('batch_size')
batch_sizes = num_to_groups(batch_size, max_batch_size)
outputs = [fn(self, *args, **{**kwargs, 'batch_size': sub_batch_size}) for sub_batch_size in batch_sizes]
else:
outputs = [fn(self, *chunked_args, **chunked_kwargs) for _, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs)]
if isinstance(outputs[0], torch.Tensor):
return torch.cat(outputs, dim = 0)
return list(map(lambda t: torch.cat(t, dim = 0), list(zip(*outputs))))
return inner
def restore_parts(state_dict_target, state_dict_from):
for name, param in state_dict_from.items():
if name not in state_dict_target:
continue
if param.size() == state_dict_target[name].size():
state_dict_target[name].copy_(param)
else:
print(f"layer {name}({param.size()} different than target: {state_dict_target[name].size()}")
return state_dict_target
class ImagenTrainer(nn.Module):
locked = False
def __init__(
self,
imagen = None,
imagen_checkpoint_path = None,
use_ema = True,
lr = 1e-4,
eps = 1e-8,
beta1 = 0.9,
beta2 = 0.99,
max_grad_norm = None,
group_wd_params = True,
warmup_steps = None,
cosine_decay_max_steps = None,
only_train_unet_number = None,
fp16 = False,
precision = None,
split_batches = True,
dl_tuple_output_keywords_names = ('images', 'text_embeds', 'text_masks', 'cond_images'),
verbose = True,
split_valid_fraction = 0.025,
split_valid_from_train = False,
split_random_seed = 42,
checkpoint_path = None,
checkpoint_every = None,
checkpoint_fs = None,
fs_kwargs: dict = None,
max_checkpoints_keep = 20,
**kwargs
):
super().__init__()
assert not ImagenTrainer.locked, 'ImagenTrainer can only be initialized once per process - for the sake of distributed training, you will now have to create a separate script to train each unet (or a script that accepts unet number as an argument)'
assert exists(imagen) ^ exists(imagen_checkpoint_path), 'either imagen instance is passed into the trainer, or a checkpoint path that contains the imagen config'
# determine filesystem, using fsspec, for saving to local filesystem or cloud
self.fs = checkpoint_fs
if not exists(self.fs):
fs_kwargs = default(fs_kwargs, {})
self.fs, _ = url_to_fs(default(checkpoint_path, './'), **fs_kwargs)
assert isinstance(imagen, (Imagen, ElucidatedImagen))
ema_kwargs, kwargs = groupby_prefix_and_trim('ema_', kwargs)
# elucidated or not
self.is_elucidated = isinstance(imagen, ElucidatedImagen)
# create accelerator instance
accelerate_kwargs, kwargs = groupby_prefix_and_trim('accelerate_', kwargs)
assert not (fp16 and exists(precision)), 'either set fp16 = True or forward the precision ("fp16", "bf16") to Accelerator'
accelerator_mixed_precision = default(precision, 'fp16' if fp16 else 'no')
self.accelerator = Accelerator(**{
'split_batches': split_batches,
'mixed_precision': accelerator_mixed_precision,
'kwargs_handlers': [DistributedDataParallelKwargs(find_unused_parameters = True)]
, **accelerate_kwargs})
ImagenTrainer.locked = self.is_distributed
# cast data to fp16 at training time if needed
self.cast_half_at_training = accelerator_mixed_precision == 'fp16'
# grad scaler must be managed outside of accelerator
grad_scaler_enabled = fp16
# imagen, unets and ema unets
self.imagen = imagen
self.num_unets = len(self.imagen.unets)
self.use_ema = use_ema and self.is_main
self.ema_unets = nn.ModuleList([])
# keep track of what unet is being trained on
# only going to allow 1 unet training at a time
self.ema_unet_being_trained_index = -1 # keeps track of which ema unet is being trained on
# data related functions
self.train_dl_iter = None
self.train_dl = None
self.valid_dl_iter = None
self.valid_dl = None
self.dl_tuple_output_keywords_names = dl_tuple_output_keywords_names
# auto splitting validation from training, if dataset is passed in
self.split_valid_from_train = split_valid_from_train
assert 0 <= split_valid_fraction <= 1, 'split valid fraction must be between 0 and 1'
self.split_valid_fraction = split_valid_fraction
self.split_random_seed = split_random_seed
# be able to finely customize learning rate, weight decay
# per unet
lr, eps, warmup_steps, cosine_decay_max_steps = map(partial(cast_tuple, length = self.num_unets), (lr, eps, warmup_steps, cosine_decay_max_steps))
for ind, (unet, unet_lr, unet_eps, unet_warmup_steps, unet_cosine_decay_max_steps) in enumerate(zip(self.imagen.unets, lr, eps, warmup_steps, cosine_decay_max_steps)):
optimizer = Adam(
unet.parameters(),
lr = unet_lr,
eps = unet_eps,
betas = (beta1, beta2),
**kwargs
)
if self.use_ema:
self.ema_unets.append(EMA(unet, **ema_kwargs))
scaler = GradScaler(enabled = grad_scaler_enabled)
scheduler = warmup_scheduler = None
if exists(unet_cosine_decay_max_steps):
scheduler = CosineAnnealingLR(optimizer, T_max = unet_cosine_decay_max_steps)
if exists(unet_warmup_steps):
warmup_scheduler = warmup.LinearWarmup(optimizer, warmup_period = unet_warmup_steps)
if not exists(scheduler):
scheduler = LambdaLR(optimizer, lr_lambda = lambda step: 1.0)
# set on object
setattr(self, f'optim{ind}', optimizer) # cannot use pytorch ModuleList for some reason with optimizers
setattr(self, f'scaler{ind}', scaler)
setattr(self, f'scheduler{ind}', scheduler)
setattr(self, f'warmup{ind}', warmup_scheduler)
# gradient clipping if needed
self.max_grad_norm = max_grad_norm
# step tracker and misc
self.register_buffer('steps', torch.tensor([0] * self.num_unets))
self.verbose = verbose
# automatic set devices based on what accelerator decided
self.imagen.to(self.device)
self.to(self.device)
# checkpointing
assert not (exists(checkpoint_path) ^ exists(checkpoint_every))
self.checkpoint_path = checkpoint_path
self.checkpoint_every = checkpoint_every
self.max_checkpoints_keep = max_checkpoints_keep
self.can_checkpoint = self.is_local_main if isinstance(checkpoint_fs, LocalFileSystem) else self.is_main
if exists(checkpoint_path) and self.can_checkpoint:
bucket = url_to_bucket(checkpoint_path)
if not self.fs.exists(bucket):
self.fs.mkdir(bucket)
self.load_from_checkpoint_folder()
# only allowing training for unet
self.only_train_unet_number = only_train_unet_number
self.prepared = False
def prepare(self):
assert not self.prepared, f'The trainer is allready prepared'
self.validate_and_set_unet_being_trained(self.only_train_unet_number)
self.prepared = True
# computed values
@property
def device(self):
return self.accelerator.device
@property
def is_distributed(self):
return not (self.accelerator.distributed_type == DistributedType.NO and self.accelerator.num_processes == 1)
@property
def is_main(self):
return self.accelerator.is_main_process
@property
def is_local_main(self):
return self.accelerator.is_local_main_process
@property
def unwrapped_unet(self):
return self.accelerator.unwrap_model(self.unet_being_trained)
# optimizer helper functions
def get_lr(self, unet_number):
self.validate_unet_number(unet_number)
unet_index = unet_number - 1
optim = getattr(self, f'optim{unet_index}')
return optim.param_groups[0]['lr']
# function for allowing only one unet from being trained at a time
def validate_and_set_unet_being_trained(self, unet_number = None):
if exists(unet_number):
self.validate_unet_number(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, 'you cannot only train on one unet at a time. you will need to save the trainer into a checkpoint, and resume training on a new unet'
self.only_train_unet_number = unet_number
self.imagen.only_train_unet_number = unet_number
if not exists(unet_number):
return
self.wrap_unet(unet_number)
def wrap_unet(self, unet_number):
if hasattr(self, 'one_unet_wrapped'):
return
unet = self.imagen.get_unet(unet_number)
unet_index = unet_number - 1
optimizer = getattr(self, f'optim{unet_index}')
scheduler = getattr(self, f'scheduler{unet_index}')
if self.train_dl:
self.unet_being_trained, self.train_dl, optimizer = self.accelerator.prepare(unet, self.train_dl, optimizer)
else:
self.unet_being_trained, optimizer = self.accelerator.prepare(unet, optimizer)
if exists(scheduler):
scheduler = self.accelerator.prepare(scheduler)
setattr(self, f'optim{unet_index}', optimizer)
setattr(self, f'scheduler{unet_index}', scheduler)
self.one_unet_wrapped = True
# hacking accelerator due to not having separate gradscaler per optimizer
def set_accelerator_scaler(self, unet_number):
def patch_optimizer_step(accelerated_optimizer, method):
def patched_step(*args, **kwargs):
accelerated_optimizer._accelerate_step_called = True
return method(*args, **kwargs)
return patched_step
unet_number = self.validate_unet_number(unet_number)
scaler = getattr(self, f'scaler{unet_number - 1}')
self.accelerator.scaler = scaler
for optimizer in self.accelerator._optimizers:
optimizer.scaler = scaler
optimizer._accelerate_step_called = False
optimizer._optimizer_original_step_method = optimizer.optimizer.step
optimizer._optimizer_patched_step_method = patch_optimizer_step(optimizer, optimizer.optimizer.step)
# helper print
def print(self, msg):
if not self.is_main:
return
if not self.verbose:
return
return self.accelerator.print(msg)
# validating the unet number
def validate_unet_number(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
assert 0 < unet_number <= self.num_unets, f'unet number should be in between 1 and {self.num_unets}'
return unet_number
# number of training steps taken
def num_steps_taken(self, unet_number = None):
if self.num_unets == 1:
unet_number = default(unet_number, 1)
return self.steps[unet_number - 1].item()
def print_untrained_unets(self):
print_final_error = False
for ind, (steps, unet) in enumerate(zip(self.steps.tolist(), self.imagen.unets)):
if steps > 0 or isinstance(unet, NullUnet):
continue
self.print(f'unet {ind + 1} has not been trained')
print_final_error = True
if print_final_error:
self.print('when sampling, you can pass stop_at_unet_number to stop early in the cascade, so it does not try to generate with untrained unets')
# data related functions
def add_train_dataloader(self, dl = None):
if not exists(dl):
return
assert not exists(self.train_dl), 'training dataloader was already added'
assert not self.prepared, f'You need to add the dataset before preperation'
self.train_dl = dl
def add_valid_dataloader(self, dl):
if not exists(dl):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
assert not self.prepared, f'You need to add the dataset before preperation'
self.valid_dl = dl
def add_train_dataset(self, ds = None, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.train_dl), 'training dataloader was already added'
valid_ds = None
if self.split_valid_from_train:
train_size = int((1 - self.split_valid_fraction) * len(ds))
valid_size = len(ds) - train_size
ds, valid_ds = random_split(ds, [train_size, valid_size], generator = torch.Generator().manual_seed(self.split_random_seed))
self.print(f'training with dataset of {len(ds)} samples and validating with randomly splitted {len(valid_ds)} samples')
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.add_train_dataloader(dl)
if not self.split_valid_from_train:
return
self.add_valid_dataset(valid_ds, batch_size = batch_size, **dl_kwargs)
def add_valid_dataset(self, ds, *, batch_size, **dl_kwargs):
if not exists(ds):
return
assert not exists(self.valid_dl), 'validation dataloader was already added'
dl = DataLoader(ds, batch_size = batch_size, **dl_kwargs)
self.add_valid_dataloader(dl)
def create_train_iter(self):
assert exists(self.train_dl), 'training dataloader has not been registered with the trainer yet'
if exists(self.train_dl_iter):
return
self.train_dl_iter = cycle(self.train_dl)
def create_valid_iter(self):
assert exists(self.valid_dl), 'validation dataloader has not been registered with the trainer yet'
if exists(self.valid_dl_iter):
return
self.valid_dl_iter = cycle(self.valid_dl)
def train_step(self, *, unet_number = None, **kwargs):
if not self.prepared:
self.prepare()
self.create_train_iter()
kwargs = {'unet_number': unet_number, **kwargs}
loss = self.step_with_dl_iter(self.train_dl_iter, **kwargs)
self.update(unet_number = unet_number)
return loss
@torch.no_grad()
@eval_decorator
def valid_step(self, **kwargs):
if not self.prepared:
self.prepare()
self.create_valid_iter()
context = self.use_ema_unets if kwargs.pop('use_ema_unets', False) else nullcontext
with context():
loss = self.step_with_dl_iter(self.valid_dl_iter, **kwargs)
return loss
def step_with_dl_iter(self, dl_iter, **kwargs):
dl_tuple_output = cast_tuple(next(dl_iter))
model_input = dict(list(zip(self.dl_tuple_output_keywords_names, dl_tuple_output)))
loss = self.forward(**{**kwargs, **model_input})
return loss
# checkpointing functions
@property
def all_checkpoints_sorted(self):
glob_pattern = os.path.join(self.checkpoint_path, '*.pt')
checkpoints = self.fs.glob(glob_pattern)
sorted_checkpoints = sorted(checkpoints, key = lambda x: int(str(x).split('.')[-2]), reverse = True)
return sorted_checkpoints
def load_from_checkpoint_folder(self, last_total_steps = -1):
if last_total_steps != -1:
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{last_total_steps}.pt')
self.load(filepath)
return
sorted_checkpoints = self.all_checkpoints_sorted
if len(sorted_checkpoints) == 0:
self.print(f'no checkpoints found to load from at {self.checkpoint_path}')
return
last_checkpoint = sorted_checkpoints[0]
self.load(last_checkpoint)
def save_to_checkpoint_folder(self):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
total_steps = int(self.steps.sum().item())
filepath = os.path.join(self.checkpoint_path, f'checkpoint.{total_steps}.pt')
self.save(filepath)
if self.max_checkpoints_keep <= 0:
return
sorted_checkpoints = self.all_checkpoints_sorted
checkpoints_to_discard = sorted_checkpoints[self.max_checkpoints_keep:]
for checkpoint in checkpoints_to_discard:
self.fs.rm(checkpoint)
# saving and loading functions
def save(
self,
path,
overwrite = True,
without_optim_and_sched = False,
**kwargs
):
self.accelerator.wait_for_everyone()
if not self.can_checkpoint:
return
fs = self.fs
assert not (fs.exists(path) and not overwrite)
self.reset_ema_unets_all_one_device()
save_obj = dict(
model = self.imagen.state_dict(),
version = __version__,
steps = self.steps.cpu(),
**kwargs
)
save_optim_and_sched_iter = range(0, self.num_unets) if not without_optim_and_sched else tuple()
for ind in save_optim_and_sched_iter:
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler):
save_obj = {**save_obj, scheduler_key: scheduler.state_dict()}
if exists(warmup_scheduler):
save_obj = {**save_obj, warmup_scheduler_key: warmup_scheduler.state_dict()}
save_obj = {**save_obj, scaler_key: scaler.state_dict(), optimizer_key: optimizer.state_dict()}
if self.use_ema:
save_obj = {**save_obj, 'ema': self.ema_unets.state_dict()}
# determine if imagen config is available
if hasattr(self.imagen, '_config'):
self.print(f'this checkpoint is commandable from the CLI - "imagen --model {str(path)} \"<prompt>\""')
save_obj = {
**save_obj,
'imagen_type': 'elucidated' if self.is_elucidated else 'original',
'imagen_params': self.imagen._config
}
#save to path
with fs.open(path, 'wb') as f:
torch.save(save_obj, f)
self.print(f'checkpoint saved to {path}')
def load(self, path, only_model = False, strict = True, noop_if_not_exist = False):
fs = self.fs
if noop_if_not_exist and not fs.exists(path):
self.print(f'trainer checkpoint not found at {str(path)}')
return
assert fs.exists(path), f'{path} does not exist'
self.reset_ema_unets_all_one_device()
# to avoid extra GPU memory usage in main process when using Accelerate
with fs.open(path) as f:
loaded_obj = torch.load(f, map_location='cpu')
if version.parse(__version__) != version.parse(loaded_obj['version']):
self.print(f'loading saved imagen at version {loaded_obj["version"]}, but current package version is {__version__}')
try:
self.imagen.load_state_dict(loaded_obj['model'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.imagen.load_state_dict(restore_parts(self.imagen.state_dict(),
loaded_obj['model']))
if only_model:
return loaded_obj
self.steps.copy_(loaded_obj['steps'])
for ind in range(0, self.num_unets):
scaler_key = f'scaler{ind}'
optimizer_key = f'optim{ind}'
scheduler_key = f'scheduler{ind}'
warmup_scheduler_key = f'warmup{ind}'
scaler = getattr(self, scaler_key)
optimizer = getattr(self, optimizer_key)
scheduler = getattr(self, scheduler_key)
warmup_scheduler = getattr(self, warmup_scheduler_key)
if exists(scheduler) and scheduler_key in loaded_obj:
scheduler.load_state_dict(loaded_obj[scheduler_key])
if exists(warmup_scheduler) and warmup_scheduler_key in loaded_obj:
warmup_scheduler.load_state_dict(loaded_obj[warmup_scheduler_key])
if exists(optimizer):
try:
optimizer.load_state_dict(loaded_obj[optimizer_key])
scaler.load_state_dict(loaded_obj[scaler_key])
except:
self.print('could not load optimizer and scaler, possibly because you have turned on mixed precision training since the last run. resuming with new optimizer and scalers')
if self.use_ema:
assert 'ema' in loaded_obj
try:
self.ema_unets.load_state_dict(loaded_obj['ema'], strict = strict)
except RuntimeError:
print("Failed loading state dict. Trying partial load")
self.ema_unets.load_state_dict(restore_parts(self.ema_unets.state_dict(),
loaded_obj['ema']))
self.print(f'checkpoint loaded from {path}')
return loaded_obj
# managing ema unets and their devices
@property
def unets(self):
return nn.ModuleList([ema.ema_model for ema in self.ema_unets])
def get_ema_unet(self, unet_number = None):
if not self.use_ema:
return
unet_number = self.validate_unet_number(unet_number)
index = unet_number - 1
if isinstance(self.unets, nn.ModuleList):
unets_list = [unet for unet in self.ema_unets]
delattr(self, 'ema_unets')
self.ema_unets = unets_list
if index != self.ema_unet_being_trained_index:
for unet_index, unet in enumerate(self.ema_unets):
unet.to(self.device if unet_index == index else 'cpu')
self.ema_unet_being_trained_index = index
return self.ema_unets[index]
def reset_ema_unets_all_one_device(self, device = None):
if not self.use_ema:
return
device = default(device, self.device)
self.ema_unets = nn.ModuleList([*self.ema_unets])
self.ema_unets.to(device)
self.ema_unet_being_trained_index = -1
@torch.no_grad()
@contextmanager
def use_ema_unets(self):
if not self.use_ema:
output = yield
return output
self.reset_ema_unets_all_one_device()
self.imagen.reset_unets_all_one_device()
self.unets.eval()
trainable_unets = self.imagen.unets
self.imagen.unets = self.unets # swap in exponential moving averaged unets for sampling
output = yield
self.imagen.unets = trainable_unets # restore original training unets
# cast the ema_model unets back to original device
for ema in self.ema_unets:
ema.restore_ema_model_device()
return output
def print_unet_devices(self):
self.print('unet devices:')
for i, unet in enumerate(self.imagen.unets):
device = next(unet.parameters()).device
self.print(f'\tunet {i}: {device}')
if not self.use_ema:
return
self.print('\nema unet devices:')
for i, ema_unet in enumerate(self.ema_unets):
device = next(ema_unet.parameters()).device
self.print(f'\tema unet {i}: {device}')
# overriding state dict functions
def state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().state_dict(*args, **kwargs)
def load_state_dict(self, *args, **kwargs):
self.reset_ema_unets_all_one_device()
return super().load_state_dict(*args, **kwargs)
# encoding text functions
def encode_text(self, text, **kwargs):
return self.imagen.encode_text(text, **kwargs)
# forwarding functions and gradient step updates
def update(self, unet_number = None):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
index = unet_number - 1
unet = self.unet_being_trained
optimizer = getattr(self, f'optim{index}')
scaler = getattr(self, f'scaler{index}')
scheduler = getattr(self, f'scheduler{index}')
warmup_scheduler = getattr(self, f'warmup{index}')
# set the grad scaler on the accelerator, since we are managing one per u-net
if exists(self.max_grad_norm):
self.accelerator.clip_grad_norm_(unet.parameters(), self.max_grad_norm)
optimizer.step()
optimizer.zero_grad()
if self.use_ema:
ema_unet = self.get_ema_unet(unet_number)
ema_unet.update()
# scheduler, if needed
maybe_warmup_context = nullcontext() if not exists(warmup_scheduler) else warmup_scheduler.dampening()
with maybe_warmup_context:
if exists(scheduler) and not self.accelerator.optimizer_step_was_skipped: # recommended in the docs
scheduler.step()
self.steps += F.one_hot(torch.tensor(unet_number - 1, device = self.steps.device), num_classes = len(self.steps))
if not exists(self.checkpoint_path):
return
total_steps = int(self.steps.sum().item())
if total_steps % self.checkpoint_every:
return
self.save_to_checkpoint_folder()
@torch.no_grad()
@cast_torch_tensor
@imagen_sample_in_chunks
def sample(self, *args, **kwargs):
context = nullcontext if kwargs.pop('use_non_ema', False) else self.use_ema_unets
self.print_untrained_unets()
if not self.is_main:
kwargs['use_tqdm'] = False
with context():
output = self.imagen.sample(*args, device = self.device, **kwargs)
return output
@partial(cast_torch_tensor, cast_fp16 = True)
def forward(
self,
*args,
unet_number = None,
max_batch_size = None,
**kwargs
):
unet_number = self.validate_unet_number(unet_number)
self.validate_and_set_unet_being_trained(unet_number)
self.set_accelerator_scaler(unet_number)
assert not exists(self.only_train_unet_number) or self.only_train_unet_number == unet_number, f'you can only train unet #{self.only_train_unet_number}'
total_loss = 0.
for chunk_size_frac, (chunked_args, chunked_kwargs) in split_args_and_kwargs(*args, split_size = max_batch_size, **kwargs):
with self.accelerator.autocast():
loss = self.imagen(*chunked_args, unet = self.unet_being_trained, unet_number = unet_number, **chunked_kwargs)
loss = loss * chunk_size_frac
total_loss += loss.item()
if self.training:
self.accelerator.backward(loss)
return total_loss