metadata
base_model: BAAI/bge-small-en-v1.5
library_name: setfit
metrics:
- accuracy
pipeline_tag: text-classification
tags:
- setfit
- sentence-transformers
- text-classification
- generated_from_setfit_trainer
widget:
- text: >-
I have owned this NAS for almost a year now and actually purchased a
second one It works flawlessly and QNAP live tech support is superb There
is also a fairly comprehensive forum for users as well I have slowly
upgraded my capacities as newer larger capacity drives have come out on
the market All have been recognized and the space expanded without a hitch
I highly recommend this product
- text: Good as expected
- text: >-
This is a very good video editing package In the past I ve only used Corel
video editing products but Cyberlink s offering is on par It offers
similar options but they are different enough for me to want to use both
products depending on what I m trying to achieve There are quick uploading
options that make it very easy to get video onto Youtube and other online
video sites
- text: Works great
- text: >-
This is my favorite crack open the computer and amuse myself for a few
hours software Easy to pick up if you have no prior experience with
computer animation but advanced enough that someone with the right skills
could pull together an impressive movie
inference: true
SetFit with BAAI/bge-small-en-v1.5
This is a SetFit model that can be used for Text Classification. This SetFit model uses BAAI/bge-small-en-v1.5 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: BAAI/bge-small-en-v1.5
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 512 tokens
- Number of Classes: 2 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
Label | Examples |
---|---|
0 |
|
1 |
|
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("selina09/yt_setfit")
# Run inference
preds = model("Works great")
Training Details
Training Set Metrics
Training set | Min | Median | Max |
---|---|---|---|
Word count | 1 | 34.9207 | 102 |
Label | Training Sample Count |
---|---|
0 | 123 |
1 | 41 |
Training Hyperparameters
- batch_size: (32, 32)
- num_epochs: (10, 10)
- max_steps: -1
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
Epoch | Step | Training Loss | Validation Loss |
---|---|---|---|
0.0019 | 1 | 0.2503 | - |
0.0942 | 50 | 0.2406 | - |
0.1883 | 100 | 0.2029 | - |
0.2825 | 150 | 0.2207 | - |
0.3766 | 200 | 0.1612 | - |
0.4708 | 250 | 0.0725 | - |
0.5650 | 300 | 0.0163 | - |
0.6591 | 350 | 0.0108 | - |
0.7533 | 400 | 0.0153 | - |
0.8475 | 450 | 0.0486 | - |
0.9416 | 500 | 0.0191 | - |
1.0358 | 550 | 0.0207 | - |
1.1299 | 600 | 0.0148 | - |
1.2241 | 650 | 0.0031 | - |
1.3183 | 700 | 0.001 | - |
1.4124 | 750 | 0.0287 | - |
1.5066 | 800 | 0.0146 | - |
1.6008 | 850 | 0.0147 | - |
1.6949 | 900 | 0.0165 | - |
1.7891 | 950 | 0.0008 | - |
1.8832 | 1000 | 0.0165 | - |
1.9774 | 1050 | 0.0007 | - |
2.0716 | 1100 | 0.0129 | - |
2.1657 | 1150 | 0.0143 | - |
2.2599 | 1200 | 0.0006 | - |
2.3540 | 1250 | 0.0008 | - |
2.4482 | 1300 | 0.0047 | - |
2.5424 | 1350 | 0.0005 | - |
2.6365 | 1400 | 0.0116 | - |
2.7307 | 1450 | 0.0093 | - |
2.8249 | 1500 | 0.0211 | - |
2.9190 | 1550 | 0.0076 | - |
3.0132 | 1600 | 0.0047 | - |
3.1073 | 1650 | 0.0005 | - |
3.2015 | 1700 | 0.0064 | - |
3.2957 | 1750 | 0.014 | - |
3.3898 | 1800 | 0.0479 | - |
3.4840 | 1850 | 0.0005 | - |
3.5782 | 1900 | 0.0045 | - |
3.6723 | 1950 | 0.0188 | - |
3.7665 | 2000 | 0.0004 | - |
3.8606 | 2050 | 0.0122 | - |
3.9548 | 2100 | 0.0004 | - |
4.0490 | 2150 | 0.008 | - |
4.1431 | 2200 | 0.0245 | - |
4.2373 | 2250 | 0.005 | - |
4.3315 | 2300 | 0.0244 | - |
4.4256 | 2350 | 0.0208 | - |
4.5198 | 2400 | 0.0237 | - |
4.6139 | 2450 | 0.0005 | - |
4.7081 | 2500 | 0.0004 | - |
4.8023 | 2550 | 0.02 | - |
4.8964 | 2600 | 0.0004 | - |
4.9906 | 2650 | 0.0067 | - |
5.0847 | 2700 | 0.0099 | - |
5.1789 | 2750 | 0.0138 | - |
5.2731 | 2800 | 0.0192 | - |
5.3672 | 2850 | 0.0217 | - |
5.4614 | 2900 | 0.0056 | - |
5.5556 | 2950 | 0.0003 | - |
5.6497 | 3000 | 0.0052 | - |
5.7439 | 3050 | 0.0123 | - |
5.8380 | 3100 | 0.0136 | - |
5.9322 | 3150 | 0.0221 | - |
6.0264 | 3200 | 0.0235 | - |
6.1205 | 3250 | 0.0144 | - |
6.2147 | 3300 | 0.0174 | - |
6.3089 | 3350 | 0.007 | - |
6.4030 | 3400 | 0.0044 | - |
6.4972 | 3450 | 0.0003 | - |
6.5913 | 3500 | 0.007 | - |
6.6855 | 3550 | 0.0004 | - |
6.7797 | 3600 | 0.0384 | - |
6.8738 | 3650 | 0.0055 | - |
6.9680 | 3700 | 0.0056 | - |
7.0621 | 3750 | 0.0118 | - |
7.1563 | 3800 | 0.0143 | - |
7.2505 | 3850 | 0.0289 | - |
7.3446 | 3900 | 0.0301 | - |
7.4388 | 3950 | 0.0119 | - |
7.5330 | 4000 | 0.012 | - |
7.6271 | 4050 | 0.0138 | - |
7.7213 | 4100 | 0.0148 | - |
7.8154 | 4150 | 0.0003 | - |
7.9096 | 4200 | 0.0268 | - |
8.0038 | 4250 | 0.0131 | - |
8.0979 | 4300 | 0.0237 | - |
8.1921 | 4350 | 0.0004 | - |
8.2863 | 4400 | 0.0211 | - |
8.3804 | 4450 | 0.0092 | - |
8.4746 | 4500 | 0.005 | - |
8.5687 | 4550 | 0.0056 | - |
8.6629 | 4600 | 0.0168 | - |
8.7571 | 4650 | 0.0045 | - |
8.8512 | 4700 | 0.0184 | - |
8.9454 | 4750 | 0.0049 | - |
9.0395 | 4800 | 0.0047 | - |
9.1337 | 4850 | 0.0099 | - |
9.2279 | 4900 | 0.0054 | - |
9.3220 | 4950 | 0.0185 | - |
9.4162 | 5000 | 0.005 | - |
9.5104 | 5050 | 0.0004 | - |
9.6045 | 5100 | 0.013 | - |
9.6987 | 5150 | 0.0002 | - |
9.7928 | 5200 | 0.0187 | - |
9.8870 | 5250 | 0.0003 | - |
9.9812 | 5300 | 0.0081 | - |
Framework Versions
- Python: 3.10.12
- SetFit: 1.0.3
- Sentence Transformers: 3.0.1
- Transformers: 4.40.2
- PyTorch: 2.4.0+cu121
- Datasets: 2.21.0
- Tokenizers: 0.19.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}