segformer-b1-finetuned-cityscapes-1024-1024-latestt
This model is a fine-tuned version of nvidia/segformer-b1-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.0311
- Mean Iou: 0.9368
- Mean Accuracy: 0.9605
- Overall Accuracy: 0.9893
- Accuracy Default: 1e-06
- Accuracy Pipe: 0.8961
- Accuracy Floor: 0.9893
- Accuracy Background: 0.9960
- Iou Default: 1e-06
- Iou Pipe: 0.8401
- Iou Floor: 0.9817
- Iou Background: 0.9886
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 3
- eval_batch_size: 3
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 60
Training results
Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Default | Accuracy Pipe | Accuracy Floor | Accuracy Background | Iou Default | Iou Pipe | Iou Floor | Iou Background |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0.5401 | 1.0 | 36 | 0.2151 | 0.7616 | 0.8215 | 0.9549 | 1e-06 | 0.5060 | 0.9791 | 0.9793 | 1e-06 | 0.4188 | 0.9090 | 0.9571 |
0.1576 | 2.0 | 72 | 0.1166 | 0.8481 | 0.8906 | 0.9737 | 1e-06 | 0.7051 | 0.9739 | 0.9929 | 1e-06 | 0.6121 | 0.9598 | 0.9724 |
0.0941 | 3.0 | 108 | 0.0739 | 0.8869 | 0.9301 | 0.9802 | 1e-06 | 0.8180 | 0.9807 | 0.9916 | 1e-06 | 0.7164 | 0.9646 | 0.9798 |
0.0678 | 4.0 | 144 | 0.0600 | 0.9001 | 0.9439 | 0.9824 | 1e-06 | 0.8588 | 0.9814 | 0.9916 | 1e-06 | 0.7499 | 0.9685 | 0.9820 |
0.0566 | 5.0 | 180 | 0.0493 | 0.9087 | 0.9531 | 0.9841 | 1e-06 | 0.8887 | 0.9778 | 0.9929 | 1e-06 | 0.7711 | 0.9711 | 0.9840 |
0.0463 | 6.0 | 216 | 0.0454 | 0.9115 | 0.9455 | 0.9847 | 1e-06 | 0.8608 | 0.9809 | 0.9949 | 1e-06 | 0.7769 | 0.9735 | 0.9840 |
0.0412 | 7.0 | 252 | 0.0425 | 0.9138 | 0.9469 | 0.9854 | 1e-06 | 0.8611 | 0.9851 | 0.9945 | 1e-06 | 0.7823 | 0.9739 | 0.9852 |
0.038 | 8.0 | 288 | 0.0379 | 0.9226 | 0.9550 | 0.9868 | 1e-06 | 0.8864 | 0.9836 | 0.9951 | 1e-06 | 0.8049 | 0.9766 | 0.9864 |
0.0337 | 9.0 | 324 | 0.0392 | 0.9184 | 0.9468 | 0.9862 | 1e-06 | 0.8626 | 0.9812 | 0.9966 | 1e-06 | 0.7935 | 0.9765 | 0.9853 |
0.0323 | 10.0 | 360 | 0.0350 | 0.9246 | 0.9544 | 0.9872 | 1e-06 | 0.8827 | 0.9852 | 0.9953 | 1e-06 | 0.8095 | 0.9779 | 0.9864 |
0.0294 | 11.0 | 396 | 0.0350 | 0.9253 | 0.9523 | 0.9873 | 1e-06 | 0.8725 | 0.9898 | 0.9947 | 1e-06 | 0.8114 | 0.9783 | 0.9863 |
0.0275 | 12.0 | 432 | 0.0379 | 0.9185 | 0.9461 | 0.9862 | 1e-06 | 0.8606 | 0.9810 | 0.9968 | 1e-06 | 0.7950 | 0.9748 | 0.9857 |
0.0279 | 13.0 | 468 | 0.0333 | 0.9267 | 0.9572 | 0.9875 | 1e-06 | 0.8914 | 0.9853 | 0.9951 | 1e-06 | 0.8160 | 0.9770 | 0.9871 |
0.0269 | 14.0 | 504 | 0.0323 | 0.9267 | 0.9495 | 0.9878 | 1e-06 | 0.8640 | 0.9878 | 0.9967 | 1e-06 | 0.8141 | 0.9790 | 0.9872 |
0.0239 | 15.0 | 540 | 0.0300 | 0.9324 | 0.9570 | 0.9886 | 1e-06 | 0.8864 | 0.9887 | 0.9959 | 1e-06 | 0.8290 | 0.9802 | 0.9880 |
0.0229 | 16.0 | 576 | 0.0303 | 0.9343 | 0.9610 | 0.9888 | 1e-06 | 0.9005 | 0.9867 | 0.9959 | 1e-06 | 0.8344 | 0.9801 | 0.9882 |
0.0217 | 17.0 | 612 | 0.0318 | 0.9290 | 0.9531 | 0.9882 | 1e-06 | 0.8743 | 0.9889 | 0.9962 | 1e-06 | 0.8197 | 0.9797 | 0.9877 |
0.021 | 18.0 | 648 | 0.0305 | 0.9314 | 0.9540 | 0.9886 | 1e-06 | 0.8756 | 0.9904 | 0.9961 | 1e-06 | 0.8256 | 0.9806 | 0.9879 |
0.0209 | 19.0 | 684 | 0.0296 | 0.9344 | 0.9637 | 0.9887 | 1e-06 | 0.9059 | 0.9915 | 0.9937 | 1e-06 | 0.8357 | 0.9795 | 0.9880 |
0.0199 | 20.0 | 720 | 0.0306 | 0.9335 | 0.9585 | 0.9888 | 1e-06 | 0.8896 | 0.9902 | 0.9955 | 1e-06 | 0.8319 | 0.9802 | 0.9883 |
0.0187 | 21.0 | 756 | 0.0305 | 0.9331 | 0.9576 | 0.9887 | 1e-06 | 0.8877 | 0.9891 | 0.9959 | 1e-06 | 0.8308 | 0.9803 | 0.9881 |
0.0184 | 22.0 | 792 | 0.0298 | 0.9353 | 0.9594 | 0.9891 | 1e-06 | 0.8926 | 0.9896 | 0.9959 | 1e-06 | 0.8364 | 0.9810 | 0.9884 |
0.0175 | 23.0 | 828 | 0.0301 | 0.9340 | 0.9576 | 0.9889 | 1e-06 | 0.8866 | 0.9906 | 0.9957 | 1e-06 | 0.8332 | 0.9806 | 0.9882 |
0.0174 | 24.0 | 864 | 0.0288 | 0.9360 | 0.9633 | 0.9891 | 1e-06 | 0.9062 | 0.9883 | 0.9953 | 1e-06 | 0.8389 | 0.9805 | 0.9885 |
0.0178 | 25.0 | 900 | 0.0306 | 0.9343 | 0.9603 | 0.9889 | 1e-06 | 0.8956 | 0.9902 | 0.9951 | 1e-06 | 0.8342 | 0.9804 | 0.9882 |
0.0165 | 26.0 | 936 | 0.0304 | 0.9349 | 0.9579 | 0.9891 | 1e-06 | 0.8884 | 0.9889 | 0.9963 | 1e-06 | 0.8353 | 0.9810 | 0.9883 |
0.016 | 27.0 | 972 | 0.0300 | 0.9352 | 0.9597 | 0.9891 | 1e-06 | 0.8934 | 0.9902 | 0.9956 | 1e-06 | 0.8362 | 0.9810 | 0.9884 |
0.0159 | 28.0 | 1008 | 0.0311 | 0.9343 | 0.9575 | 0.9890 | 1e-06 | 0.8872 | 0.9891 | 0.9962 | 1e-06 | 0.8340 | 0.9804 | 0.9884 |
0.0157 | 29.0 | 1044 | 0.0302 | 0.9362 | 0.9631 | 0.9891 | 1e-06 | 0.9050 | 0.9894 | 0.9951 | 1e-06 | 0.8389 | 0.9813 | 0.9883 |
0.015 | 30.0 | 1080 | 0.0312 | 0.9344 | 0.9601 | 0.9890 | 1e-06 | 0.8959 | 0.9887 | 0.9957 | 1e-06 | 0.8340 | 0.9809 | 0.9883 |
0.0162 | 31.0 | 1116 | 0.0334 | 0.9321 | 0.9558 | 0.9886 | 1e-06 | 0.8833 | 0.9876 | 0.9965 | 1e-06 | 0.8276 | 0.9807 | 0.9879 |
0.0144 | 32.0 | 1152 | 0.0312 | 0.9352 | 0.9610 | 0.9890 | 1e-06 | 0.8976 | 0.9900 | 0.9952 | 1e-06 | 0.8366 | 0.9805 | 0.9883 |
0.0147 | 33.0 | 1188 | 0.0299 | 0.9375 | 0.9607 | 0.9895 | 1e-06 | 0.8960 | 0.9902 | 0.9959 | 1e-06 | 0.8419 | 0.9817 | 0.9888 |
0.0144 | 34.0 | 1224 | 0.0323 | 0.9342 | 0.9592 | 0.9889 | 1e-06 | 0.8937 | 0.9879 | 0.9961 | 1e-06 | 0.8341 | 0.9802 | 0.9884 |
0.0144 | 35.0 | 1260 | 0.0303 | 0.9359 | 0.9608 | 0.9892 | 1e-06 | 0.8977 | 0.9890 | 0.9959 | 1e-06 | 0.8378 | 0.9812 | 0.9886 |
0.014 | 36.0 | 1296 | 0.0314 | 0.9359 | 0.9577 | 0.9892 | 1e-06 | 0.8878 | 0.9886 | 0.9967 | 1e-06 | 0.8378 | 0.9814 | 0.9885 |
0.0136 | 37.0 | 1332 | 0.0316 | 0.9365 | 0.9600 | 0.9893 | 1e-06 | 0.8954 | 0.9883 | 0.9963 | 1e-06 | 0.8397 | 0.9813 | 0.9885 |
0.0138 | 38.0 | 1368 | 0.0325 | 0.9352 | 0.9577 | 0.9891 | 1e-06 | 0.8869 | 0.9899 | 0.9962 | 1e-06 | 0.8361 | 0.9812 | 0.9884 |
0.0137 | 39.0 | 1404 | 0.0316 | 0.9363 | 0.9597 | 0.9893 | 1e-06 | 0.8933 | 0.9896 | 0.9960 | 1e-06 | 0.8391 | 0.9811 | 0.9886 |
0.0132 | 40.0 | 1440 | 0.0320 | 0.9353 | 0.9590 | 0.9891 | 1e-06 | 0.8930 | 0.9876 | 0.9965 | 1e-06 | 0.8368 | 0.9807 | 0.9884 |
0.0129 | 41.0 | 1476 | 0.0311 | 0.9368 | 0.9605 | 0.9893 | 1e-06 | 0.8961 | 0.9893 | 0.9960 | 1e-06 | 0.8401 | 0.9817 | 0.9886 |
Framework versions
- Transformers 4.35.2
- Pytorch 2.0.1
- Datasets 2.15.0
- Tokenizers 0.15.0
- Downloads last month
- 4