metadata
language:
- ru
pipeline_tag: sentence-similarity
tags:
- russian
- pretraining
- embeddings
- feature-extraction
- sentence-similarity
- sentence-transformers
- transformers
license: mit
Базовый Bert для Semantic text similarity (STS) на GPU
Качественная модель BERT для расчетов эмбедингов предложений на русском языке. Модель основана на cointegrated/LaBSE-en-ru - имеет аналогичные размеры контекста (512), ембединга (768) и быстродействие. Является второй и лучшей по качеству моделью в серии BERT-sts.
На STS и близких задачах (PI, NLI, SA, TI) для русского языка конкурирует по качеству с моделью intfloat/multilingual-e5-large (но потребляет на 77% меньше памяти и быстрее на 80%). Оптимальна для использования в составе RAG LLMs при инференсе на GPU.
Использование модели с библиотекой transformers
:
# pip install transformers sentencepiece
import torch
from transformers import AutoTokenizer, AutoModel
tokenizer = AutoTokenizer.from_pretrained("sergeyzh/LaBSE-ru-sts")
model = AutoModel.from_pretrained("sergeyzh/LaBSE-ru-sts")
# model.cuda() # uncomment it if you have a GPU
def embed_bert_cls(text, model, tokenizer):
t = tokenizer(text, padding=True, truncation=True, return_tensors='pt')
with torch.no_grad():
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
embeddings = model_output.last_hidden_state[:, 0, :]
embeddings = torch.nn.functional.normalize(embeddings)
return embeddings[0].cpu().numpy()
print(embed_bert_cls('привет мир', model, tokenizer).shape)
# (768,)
Использование с sentence_transformers
:
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('sergeyzh/LaBSE-ru-sts')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(util.dot_score(embeddings, embeddings))
Метрики
Оценки модели на бенчмарке encodechka:
Модель | STS | PI | NLI | SA | TI |
---|---|---|---|---|---|
intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 |
sergeyzh/LaBSE-ru-sts | 0.845 | 0.737 | 0.481 | 0.805 | 0.957 |
sergeyzh/rubert-tiny-sts | 0.797 | 0.702 | 0.453 | 0.778 | 0.946 |
Tochka-AI/ruRoPEBert-e5-base-512 | 0.793 | 0.704 | 0.457 | 0.803 | 0.970 |
cointegrated/LaBSE-en-ru | 0.794 | 0.659 | 0.431 | 0.761 | 0.946 |
cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 |
Задачи:
- Semantic text similarity (STS);
- Paraphrase identification (PI);
- Natural language inference (NLI);
- Sentiment analysis (SA);
- Toxicity identification (TI).
Быстродействие и размеры
На бенчмарке encodechka:
Модель | CPU | GPU | size | dim | n_ctx | n_vocab |
---|---|---|---|---|---|---|
intfloat/multilingual-e5-large | 149.026 | 15.629 | 2136 | 1024 | 514 | 250002 |
sergeyzh/LaBSE-ru-sts | 42.835 | 8.561 | 490 | 768 | 512 | 55083 |
sergeyzh/rubert-tiny-sts | 3.208 | 3.379 | 111 | 312 | 2048 | 83828 |
Tochka-AI/ruRoPEBert-e5-base-512 | 43.314 | 9.338 | 532 | 768 | 512 | 69382 |
cointegrated/LaBSE-en-ru | 42.867 | 8.549 | 490 | 768 | 512 | 55083 |
cointegrated/rubert-tiny2 | 3.212 | 3.384 | 111 | 312 | 2048 | 83828 |
При использовании батчей с sentence_transformers
:
from sentence_transformers import SentenceTransformer
model_name = 'sergeyzh/LaBSE-ru-sts'
model = SentenceTransformer(model_name, device='cpu')
sentences = ["Тест быстродействия на CPU Ryzen 7 3800X: batch = 50"] * 50
%timeit -n 5 -r 3 model.encode(sentences)
# 882 ms ± 104 ms per loop (mean ± std. dev. of 3 runs, 5 loops each)
# 50/0.882 = 57 snt/s
model = SentenceTransformer(model_name, device='cuda')
sentences = ["Тест быстродействия на GPU RTX 3060: batch = 1500"] * 1500
%timeit -n 5 -r 3 model.encode(sentences)
# 792 ms ± 29 ms per loop (mean ± std. dev. of 3 runs, 5 loops each)
# 1500/0.792 = 1894 snt/s
Связанные ресурсы
Вопросы использования модели обсуждаются в русскоязычном чате NLP.