Быстрая модель BERT для расчетов эмбеддингов предложений на русском языке. Модель основана на cointegrated/rubert-tiny2 - имеет аналогичные размеры контекста (2048), ембеддинга (312) и быстродействие.
Использование
from sentence_transformers import SentenceTransformer, util
model = SentenceTransformer('sergeyzh/rubert-tiny-turbo')
sentences = ["привет мир", "hello world", "здравствуй вселенная"]
embeddings = model.encode(sentences)
print(util.dot_score(embeddings, embeddings))
Метрики
Оценки модели на бенчмарке encodechka:
model | CPU | GPU | size | Mean S | Mean S+W | dim |
---|---|---|---|---|---|---|
sergeyzh/LaBSE-ru-turbo | 120.40 | 8.05 | 490 | 0.789 | 0.702 | 768 |
BAAI/bge-m3 | 523.40 | 22.50 | 2166 | 0.787 | 0.696 | 1024 |
intfloat/multilingual-e5-large | 506.80 | 30.80 | 2136 | 0.780 | 0.686 | 1024 |
intfloat/multilingual-e5-base | 130.61 | 14.39 | 1061 | 0.761 | 0.669 | 768 |
sergeyzh/rubert-tiny-turbo | 5.51 | 3.25 | 111 | 0.749 | 0.667 | 312 |
intfloat/multilingual-e5-small | 40.86 | 12.09 | 449 | 0.742 | 0.645 | 384 |
cointegrated/rubert-tiny2 | 5.51 | 3.25 | 111 | 0.704 | 0.638 | 312 |
model | STS | PI | NLI | SA | TI | IA | IC | ICX | NE1 | NE2 |
---|---|---|---|---|---|---|---|---|---|---|
sergeyzh/LaBSE-ru-turbo | 0.864 | 0.748 | 0.490 | 0.814 | 0.974 | 0.806 | 0.815 | 0.801 | 0.305 | 0.404 |
BAAI/bge-m3 | 0.864 | 0.749 | 0.510 | 0.819 | 0.973 | 0.792 | 0.809 | 0.783 | 0.240 | 0.422 |
intfloat/multilingual-e5-large | 0.862 | 0.727 | 0.473 | 0.810 | 0.979 | 0.798 | 0.819 | 0.773 | 0.224 | 0.374 |
intfloat/multilingual-e5-base | 0.835 | 0.704 | 0.459 | 0.796 | 0.964 | 0.783 | 0.802 | 0.738 | 0.235 | 0.376 |
sergeyzh/rubert-tiny-turbo | 0.828 | 0.722 | 0.476 | 0.787 | 0.955 | 0.757 | 0.780 | 0.685 | 0.305 | 0.373 |
intfloat/multilingual-e5-small | 0.822 | 0.714 | 0.457 | 0.758 | 0.957 | 0.761 | 0.779 | 0.691 | 0.234 | 0.275 |
cointegrated/rubert-tiny2 | 0.750 | 0.651 | 0.417 | 0.737 | 0.937 | 0.746 | 0.757 | 0.638 | 0.360 | 0.386 |
Оценки модели на бенчмарке ruMTEB:
Model Name | Metric | sbert_large_ mt_nlu_ru | sbert_large_ nlu_ru | rubert-tiny2 | rubert-tiny-turbo | multilingual-e5-small | multilingual-e5-base | multilingual-e5-large |
---|---|---|---|---|---|---|---|---|
CEDRClassification | Accuracy | 0.368 | 0.358 | 0.369 | 0.390 | 0.401 | 0.423 | 0.448 |
GeoreviewClassification | Accuracy | 0.397 | 0.400 | 0.396 | 0.414 | 0.447 | 0.461 | 0.497 |
GeoreviewClusteringP2P | V-measure | 0.584 | 0.590 | 0.442 | 0.597 | 0.586 | 0.545 | 0.605 |
HeadlineClassification | Accuracy | 0.772 | 0.793 | 0.742 | 0.686 | 0.732 | 0.757 | 0.758 |
InappropriatenessClassification | Accuracy | 0.646 | 0.625 | 0.586 | 0.591 | 0.592 | 0.588 | 0.616 |
KinopoiskClassification | Accuracy | 0.503 | 0.495 | 0.491 | 0.505 | 0.500 | 0.509 | 0.566 |
RiaNewsRetrieval | NDCG@10 | 0.214 | 0.111 | 0.140 | 0.513 | 0.700 | 0.702 | 0.807 |
RuBQReranking | MAP@10 | 0.561 | 0.468 | 0.461 | 0.622 | 0.715 | 0.720 | 0.756 |
RuBQRetrieval | NDCG@10 | 0.298 | 0.124 | 0.109 | 0.517 | 0.685 | 0.696 | 0.741 |
RuReviewsClassification | Accuracy | 0.589 | 0.583 | 0.570 | 0.607 | 0.612 | 0.630 | 0.653 |
RuSTSBenchmarkSTS | Pearson correlation | 0.712 | 0.588 | 0.694 | 0.787 | 0.781 | 0.796 | 0.831 |
RuSciBenchGRNTIClassification | Accuracy | 0.542 | 0.539 | 0.456 | 0.529 | 0.550 | 0.563 | 0.582 |
RuSciBenchGRNTIClusteringP2P | V-measure | 0.522 | 0.504 | 0.414 | 0.481 | 0.511 | 0.516 | 0.520 |
RuSciBenchOECDClassification | Accuracy | 0.438 | 0.430 | 0.355 | 0.415 | 0.427 | 0.423 | 0.445 |
RuSciBenchOECDClusteringP2P | V-measure | 0.473 | 0.464 | 0.381 | 0.411 | 0.443 | 0.448 | 0.450 |
SensitiveTopicsClassification | Accuracy | 0.285 | 0.280 | 0.220 | 0.244 | 0.228 | 0.234 | 0.257 |
TERRaClassification | Average Precision | 0.520 | 0.502 | 0.519 | 0.563 | 0.551 | 0.550 | 0.584 |
Model Name | Metric | sbert_large_ mt_nlu_ru | sbert_large_ nlu_ru | rubert-tiny2 | rubert-tiny-turbo | multilingual-e5-small | multilingual-e5-base | multilingual-e5-large |
---|---|---|---|---|---|---|---|---|
Classification | Accuracy | 0.554 | 0.552 | 0.514 | 0.535 | 0.551 | 0.561 | 0.588 |
Clustering | V-measure | 0.526 | 0.519 | 0.412 | 0.496 | 0.513 | 0.503 | 0.525 |
MultiLabelClassification | Accuracy | 0.326 | 0.319 | 0.294 | 0.317 | 0.314 | 0.329 | 0.353 |
PairClassification | Average Precision | 0.520 | 0.502 | 0.519 | 0.563 | 0.551 | 0.550 | 0.584 |
Reranking | MAP@10 | 0.561 | 0.468 | 0.461 | 0.622 | 0.715 | 0.720 | 0.756 |
Retrieval | NDCG@10 | 0.256 | 0.118 | 0.124 | 0.515 | 0.697 | 0.699 | 0.774 |
STS | Pearson correlation | 0.712 | 0.588 | 0.694 | 0.787 | 0.781 | 0.796 | 0.831 |
Average | Average | 0.494 | 0.438 | 0.431 | 0.548 | 0.588 | 0.594 | 0.630 |
- Downloads last month
- 67,222
Model tree for sergeyzh/rubert-tiny-turbo
Base model
cointegrated/rubert-tiny2Datasets used to train sergeyzh/rubert-tiny-turbo
Space using sergeyzh/rubert-tiny-turbo 1
Evaluation results
- main_score on MTEB AILACasedocs (default)test set self-reported7.433
- map_at_1 on MTEB AILACasedocs (default)test set self-reported0.604
- map_at_10 on MTEB AILACasedocs (default)test set self-reported3.899
- map_at_100 on MTEB AILACasedocs (default)test set self-reported7.890
- map_at_1000 on MTEB AILACasedocs (default)test set self-reported8.417
- map_at_20 on MTEB AILACasedocs (default)test set self-reported5.007
- map_at_3 on MTEB AILACasedocs (default)test set self-reported2.688
- map_at_5 on MTEB AILACasedocs (default)test set self-reported3.038
- mrr_at_1 on MTEB AILACasedocs (default)test set self-reported6.000
- mrr_at_10 on MTEB AILACasedocs (default)test set self-reported11.800