DeBERTaV3_model_V2 / README.md
sergiomvazq's picture
End of training
bee8271 verified
metadata
license: mit
base_model: microsoft/deberta-v3-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: DeBERTaV3_model_V2
    results: []

DeBERTaV3_model_V2

This model is a fine-tuned version of microsoft/deberta-v3-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1711
  • Accuracy: 0.9412
  • F1: 0.7500
  • Precision: 0.8
  • Recall: 0.7059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 5
  • eval_batch_size: 5
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
No log 1.0 50 0.3627 0.875 0.0 0.0 0.0
No log 2.0 100 0.3804 0.875 0.0 0.0 0.0
No log 3.0 150 0.3085 0.8934 0.2564 1.0 0.1471
No log 4.0 200 0.2722 0.9007 0.4706 0.7059 0.3529
No log 5.0 250 0.2206 0.9118 0.6129 0.6786 0.5588
No log 6.0 300 0.2140 0.9265 0.6667 0.7692 0.5882
No log 7.0 350 0.2022 0.9265 0.6875 0.7333 0.6471
No log 8.0 400 0.1940 0.9301 0.7077 0.7419 0.6765
No log 9.0 450 0.1711 0.9412 0.7500 0.8 0.7059
0.2198 10.0 500 0.1778 0.9338 0.7188 0.7667 0.6765

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.3.0+cu121
  • Datasets 2.19.2
  • Tokenizers 0.19.1