seriouspark's picture
End of training
a21af78 verified
metadata
base_model: monologg/koelectra-small-v3-discriminator
tags:
  - generated_from_trainer
model-index:
  - name: find_tune_bert_output
    results: []

find_tune_bert_output

This model is a fine-tuned version of monologg/koelectra-small-v3-discriminator on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2110
  • Overall Precision: 0.8468
  • Overall Recall: 0.8561
  • Overall F1: 0.8514
  • Overall Accuracy: 0.9405
  • Loc F1: 0.9090
  • Org F1: 0.7685
  • Per F1: 0.8477

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 7

Training results

Training Loss Epoch Step Validation Loss Overall Precision Overall Recall Overall F1 Overall Accuracy Loc F1 Org F1 Per F1
0.2146 0.8 1000 0.2903 0.7632 0.8340 0.7970 0.9175 0.8729 0.6812 0.7966
0.2538 1.6 2000 0.2374 0.8183 0.8290 0.8236 0.9299 0.8940 0.7187 0.8178
0.2192 2.4 3000 0.2265 0.8246 0.8437 0.8340 0.9340 0.8956 0.7403 0.8322
0.1967 3.2 4000 0.2206 0.8261 0.8529 0.8393 0.9354 0.9047 0.7499 0.8290
0.1814 4.0 5000 0.2169 0.8371 0.8538 0.8453 0.9379 0.9057 0.7605 0.8388
0.1661 4.8 6000 0.2169 0.8403 0.8490 0.8446 0.9382 0.9050 0.7583 0.8378
0.1577 5.6 7000 0.2116 0.8413 0.8604 0.8507 0.9401 0.9088 0.7670 0.8472
0.1544 6.4 8000 0.2110 0.8468 0.8561 0.8514 0.9405 0.9090 0.7685 0.8477

Framework versions

  • Transformers 4.38.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.18.0
  • Tokenizers 0.15.2