Edit model card

openai/whisper-medium

This model is a fine-tuned version of openai/whisper-medium on the common_voice_11_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3069
  • Wer: 19.8399

Model description

The Model is fine-tuned for 1000 steps/updates on CV11 Hungarian train+valiation data.

  • Zero-shot - 26.9 (CV9 test data, even on CV11 the WER is closer a bit higher than this)
  • Fine-tuned - 19.83 (CV11 test data)

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 64
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.0031 7.46 1000 0.3069 19.8399

Framework versions

  • Transformers 4.26.0.dev0
  • Pytorch 1.13.0+cu117
  • Datasets 2.7.1.dev0
  • Tokenizers 0.13.2
Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train sgangireddy/whisper-medium-hu

Evaluation results