distilbert-base-uncased-cohl

This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.8197

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 128
  • eval_batch_size: 128
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 200

Training results

Training Loss Epoch Step Validation Loss
7.6714 1.0 157 6.5491
6.4508 2.0 314 6.3591
6.3245 3.0 471 6.2702
6.2262 4.0 628 6.1747
6.1619 5.0 785 6.1199
6.1333 6.0 942 6.0925
6.1038 7.0 1099 6.0610
6.0825 8.0 1256 6.0783
6.0712 9.0 1413 6.0782
6.0594 10.0 1570 6.0546
6.0407 11.0 1727 6.0402
6.036 12.0 1884 6.0381
6.0332 13.0 2041 6.0056
6.0243 14.0 2198 6.0319
6.0156 15.0 2355 6.0127
6.0234 16.0 2512 6.0173
6.0071 17.0 2669 5.9917
6.0029 18.0 2826 5.9979
6.0012 19.0 2983 5.9878
5.9949 20.0 3140 5.9695
5.9894 21.0 3297 5.9852
5.9846 22.0 3454 5.9776
5.9766 23.0 3611 5.9655
5.9787 24.0 3768 5.9602
5.9717 25.0 3925 5.9889
5.9733 26.0 4082 5.9699
5.9655 27.0 4239 5.9611
5.9737 28.0 4396 5.9804
5.9605 29.0 4553 5.9618
5.9623 30.0 4710 5.9489
5.9588 31.0 4867 5.9630
5.9537 32.0 5024 5.9625
5.9536 33.0 5181 5.9692
5.9489 34.0 5338 5.9739
5.9424 35.0 5495 5.9553
5.945 36.0 5652 5.9464
5.9402 37.0 5809 5.9514
5.9376 38.0 5966 5.9398
5.9389 39.0 6123 5.9321
5.9274 40.0 6280 5.9638
5.9324 41.0 6437 5.9382
5.9275 42.0 6594 5.9396
5.9222 43.0 6751 5.9417
5.9282 44.0 6908 5.9344
5.9247 45.0 7065 5.9181
5.9167 46.0 7222 5.9462
5.9099 47.0 7379 5.9378
5.9126 48.0 7536 5.9052
5.9119 49.0 7693 5.9241
5.9116 50.0 7850 5.8920
5.9003 51.0 8007 5.9172
5.8978 52.0 8164 5.9379
5.8994 53.0 8321 5.9163
5.8973 54.0 8478 5.9284
5.8954 55.0 8635 5.9162
5.8959 56.0 8792 5.8985
5.8983 57.0 8949 5.9143
5.8878 58.0 9106 5.9355
5.8909 59.0 9263 5.9024
5.885 60.0 9420 5.9066
5.8861 61.0 9577 5.8989
5.8779 62.0 9734 5.9037
5.8849 63.0 9891 5.8944
5.8819 64.0 10048 5.9009
5.885 65.0 10205 5.9051
5.8747 66.0 10362 5.9144
5.8746 67.0 10519 5.9108
5.8682 68.0 10676 5.8830
5.8763 69.0 10833 5.9133
5.8664 70.0 10990 5.8987
5.8683 71.0 11147 5.8863
5.8675 72.0 11304 5.9088
5.8713 73.0 11461 5.8645
5.8584 74.0 11618 5.9043
5.8657 75.0 11775 5.8824
5.8648 76.0 11932 5.9092
5.8634 77.0 12089 5.9003
5.86 78.0 12246 5.8910
5.8629 79.0 12403 5.8885
5.8505 80.0 12560 5.8681
5.8608 81.0 12717 5.8960
5.8481 82.0 12874 5.9000
5.8495 83.0 13031 5.8935
5.8436 84.0 13188 5.8784
5.8493 85.0 13345 5.8821
5.8507 86.0 13502 5.8831
5.8472 87.0 13659 5.8779
5.8422 88.0 13816 5.8784
5.8412 89.0 13973 5.8630
5.8416 90.0 14130 5.8723
5.842 91.0 14287 5.8794
5.8375 92.0 14444 5.8611
5.8404 93.0 14601 5.8705
5.8451 94.0 14758 5.8883
5.8364 95.0 14915 5.8747
5.8365 96.0 15072 5.8885
5.8277 97.0 15229 5.8667
5.8255 98.0 15386 5.8603
5.8336 99.0 15543 5.8644
5.826 100.0 15700 5.8725
5.8223 101.0 15857 5.8714
5.8415 102.0 16014 5.8773
5.8286 103.0 16171 5.8704
5.8281 104.0 16328 5.8732
5.8246 105.0 16485 5.8582
5.8267 106.0 16642 5.8603
5.8176 107.0 16799 5.8751
5.8214 108.0 16956 5.8774
5.8115 109.0 17113 5.8826
5.8205 110.0 17270 5.8516
5.8136 111.0 17427 5.8743
5.8166 112.0 17584 5.8555
5.8171 113.0 17741 5.8695
5.8176 114.0 17898 5.8531
5.8108 115.0 18055 5.8570
5.808 116.0 18212 5.8552
5.8094 117.0 18369 5.8619
5.8108 118.0 18526 5.8665
5.8064 119.0 18683 5.8851
5.8099 120.0 18840 5.8507
5.8073 121.0 18997 5.8676
5.814 122.0 19154 5.8492
5.8093 123.0 19311 5.8506
5.8135 124.0 19468 5.8668
5.8031 125.0 19625 5.8617
5.801 126.0 19782 5.8626
5.8019 127.0 19939 5.8472
5.8106 128.0 20096 5.8429
5.8013 129.0 20253 5.8668
5.809 130.0 20410 5.8824
5.8 131.0 20567 5.8498
5.8006 132.0 20724 5.8757
5.8008 133.0 20881 5.8397
5.7908 134.0 21038 5.8569
5.7967 135.0 21195 5.8304
5.7908 136.0 21352 5.8265
5.7931 137.0 21509 5.8416
5.7896 138.0 21666 5.8368
5.7904 139.0 21823 5.8608
5.791 140.0 21980 5.8369
5.7887 141.0 22137 5.8705
5.7817 142.0 22294 5.8713
5.787 143.0 22451 5.8488
5.7913 144.0 22608 5.8516
5.7877 145.0 22765 5.8438
5.7905 146.0 22922 5.8595
5.7901 147.0 23079 5.8488
5.7906 148.0 23236 5.8460
5.7806 149.0 23393 5.8294
5.7912 150.0 23550 5.8776
5.7803 151.0 23707 5.8262
5.7821 152.0 23864 5.8729
5.7889 153.0 24021 5.8541
5.783 154.0 24178 5.8542
5.7901 155.0 24335 5.8449
5.7821 156.0 24492 5.8524
5.7868 157.0 24649 5.8675
5.7812 158.0 24806 5.8742
5.7821 159.0 24963 5.8496
5.7851 160.0 25120 5.8463
5.7787 161.0 25277 5.8573
5.7836 162.0 25434 5.8212
5.7786 163.0 25591 5.8683
5.7901 164.0 25748 5.8445
5.7764 165.0 25905 5.8253
5.7793 166.0 26062 5.8443
5.7709 167.0 26219 5.8254
5.7823 168.0 26376 5.8591
5.7753 169.0 26533 5.8154
5.7778 170.0 26690 5.8338
5.7785 171.0 26847 5.8596
5.7658 172.0 27004 5.8644
5.7719 173.0 27161 5.8282
5.781 174.0 27318 5.8451
5.7806 175.0 27475 5.8407
5.7798 176.0 27632 5.8622
5.7772 177.0 27789 5.8445
5.7686 178.0 27946 5.8529
5.7738 179.0 28103 5.8474
5.776 180.0 28260 5.8565
5.7685 181.0 28417 5.8253
5.7659 182.0 28574 5.8449
5.7684 183.0 28731 5.8497
5.7709 184.0 28888 5.8385
5.7631 185.0 29045 5.8131
5.7733 186.0 29202 5.8428
5.7736 187.0 29359 5.8388
5.7704 188.0 29516 5.8519
5.7719 189.0 29673 5.8454
5.7737 190.0 29830 5.8209
5.7667 191.0 29987 5.8681
5.7686 192.0 30144 5.8417
5.7754 193.0 30301 5.8566
5.7743 194.0 30458 5.8510
5.7739 195.0 30615 5.8308
5.7755 196.0 30772 5.8390
5.7702 197.0 30929 5.8320
5.767 198.0 31086 5.8447
5.7691 199.0 31243 5.8465
5.7753 200.0 31400 5.8197

Framework versions

  • Transformers 4.30.2
  • Pytorch 2.0.1+cu118
  • Datasets 2.13.0
  • Tokenizers 0.13.3
Downloads last month
27
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.