|
--- |
|
license: apache-2.0 |
|
tags: |
|
- generated_from_trainer |
|
datasets: |
|
- peoples_daily_ner |
|
metrics: |
|
- precision |
|
- recall |
|
- f1 |
|
- accuracy |
|
model-index: |
|
- name: ner_peoples_daily |
|
results: |
|
- task: |
|
name: Token Classification |
|
type: token-classification |
|
dataset: |
|
name: peoples_daily_ner |
|
type: peoples_daily_ner |
|
config: peoples_daily_ner |
|
split: train |
|
args: peoples_daily_ner |
|
metrics: |
|
- name: Precision |
|
type: precision |
|
value: 0.9205354599829109 |
|
- name: Recall |
|
type: recall |
|
value: 0.9365401332946972 |
|
- name: F1 |
|
type: f1 |
|
value: 0.9284688307957485 |
|
- name: Accuracy |
|
type: accuracy |
|
value: 0.9929549534505072 |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# ner_peoples_daily |
|
|
|
This model is a fine-tuned version of [hfl/rbt6](https://huggingface.co/hfl/rbt6) on the peoples_daily_ner dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.0249 |
|
- Precision: 0.9205 |
|
- Recall: 0.9365 |
|
- F1: 0.9285 |
|
- Accuracy: 0.9930 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 128 |
|
- eval_batch_size: 128 |
|
- seed: 42 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 8 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| |
|
| 0.3154 | 1.0 | 164 | 0.0410 | 0.8258 | 0.8684 | 0.8466 | 0.9868 | |
|
| 0.0394 | 2.0 | 328 | 0.0287 | 0.8842 | 0.9070 | 0.8954 | 0.9905 | |
|
| 0.0293 | 3.0 | 492 | 0.0264 | 0.8978 | 0.9168 | 0.9072 | 0.9916 | |
|
| 0.02 | 4.0 | 656 | 0.0254 | 0.9149 | 0.9226 | 0.9188 | 0.9923 | |
|
| 0.016 | 5.0 | 820 | 0.0250 | 0.9167 | 0.9281 | 0.9224 | 0.9927 | |
|
| 0.0124 | 6.0 | 984 | 0.0252 | 0.9114 | 0.9328 | 0.9220 | 0.9928 | |
|
| 0.0108 | 7.0 | 1148 | 0.0249 | 0.9169 | 0.9339 | 0.9254 | 0.9928 | |
|
| 0.0097 | 8.0 | 1312 | 0.0249 | 0.9205 | 0.9365 | 0.9285 | 0.9930 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.23.1 |
|
- Pytorch 1.12.1+cu113 |
|
- Datasets 2.5.2 |
|
- Tokenizers 0.13.1 |
|
|