|
--- |
|
language: |
|
- zh |
|
tags: |
|
- chatglm |
|
- pytorch |
|
- Text-Generation |
|
license: apache-2.0 |
|
widget: |
|
- text: |- |
|
对下面中文拼写纠错: |
|
少先队员因该为老人让坐。 |
|
答: |
|
base_model: THUDM/chatglm3-6b |
|
pipeline_tag: text-generation |
|
library_name: peft |
|
inference: false |
|
--- |
|
|
|
# Chinese Spelling Correction LoRA Model |
|
ChatGLM3-6B中文纠错LoRA模型 |
|
|
|
`shibing624/chatglm3-6b-csc-chinese-lora` evaluate test data: |
|
|
|
The overall performance of shibing624/chatglm3-6b-csc-chinese-lora on CSC **test**: |
|
|
|
|input_text|pred| |
|
|:--- |:--- | |
|
|对下面文本纠错:少先队员因该为老人让坐。|少先队员应该为老人让座。| |
|
|
|
在CSC测试集上生成结果纠错准确率高,由于是基于[THUDM/chatglm3-6b](https://huggingface.co/THUDM/chatglm3-6b)模型,结果常常能带给人惊喜,不仅能纠错,还带有句子润色和改写功能。 |
|
|
|
|
|
## Usage |
|
|
|
本项目开源在 pycorrector 项目:[pycorrector](https://github.com/shibing624/pycorrector),可支持ChatGLM原生模型和LoRA微调后的模型,通过如下命令调用: |
|
|
|
Install package: |
|
```shell |
|
pip install -U pycorrector |
|
``` |
|
|
|
```python |
|
from pycorrector import GptCorrector |
|
model = GptCorrector("THUDM/chatglm3-6b", "chatglm", peft_name="shibing624/chatglm3-6b-csc-chinese-lora") |
|
r = model.correct_batch(["少先队员因该为老人让坐。"]) |
|
print(r) # ['少先队员应该为老人让座。'] |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [pycorrector](https://github.com/shibing624/pycorrector), you can use the model like this: |
|
|
|
First, you pass your input through the transformer model, then you get the generated sentence. |
|
|
|
Install package: |
|
``` |
|
pip install transformers |
|
``` |
|
|
|
```python |
|
import os |
|
|
|
import torch |
|
from peft import PeftModel |
|
from transformers import AutoTokenizer, AutoModel |
|
|
|
os.environ["KMP_DUPLICATE_LIB_OK"] = "TRUE" |
|
tokenizer = AutoTokenizer.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True) |
|
model = AutoModel.from_pretrained("THUDM/chatglm3-6b", trust_remote_code=True).half().cuda() |
|
model = PeftModel.from_pretrained(model, "shibing624/chatglm3-6b-csc-chinese-lora") |
|
|
|
sents = ['对下面文本纠错\n\n少先队员因该为老人让坐。', |
|
'对下面文本纠错\n\n下个星期,我跟我朋唷打算去法国玩儿。'] |
|
|
|
|
|
def get_prompt(user_query): |
|
vicuna_prompt = "A chat between a curious user and an artificial intelligence assistant. " \ |
|
"The assistant gives helpful, detailed, and polite answers to the user's questions. " \ |
|
"USER: {query} ASSISTANT:" |
|
return vicuna_prompt.format(query=user_query) |
|
|
|
|
|
for s in sents: |
|
q = get_prompt(s) |
|
input_ids = tokenizer(q).input_ids |
|
generation_kwargs = dict(max_new_tokens=128, do_sample=True, temperature=0.8) |
|
outputs = model.generate(input_ids=torch.as_tensor([input_ids]).to('cuda:0'), **generation_kwargs) |
|
output_tensor = outputs[0][len(input_ids):] |
|
response = tokenizer.decode(output_tensor, skip_special_tokens=True) |
|
print(response) |
|
``` |
|
|
|
output: |
|
```shell |
|
少先队员应该为老人让座。 |
|
下个星期,我跟我朋友打算去法国玩儿。 |
|
``` |
|
|
|
|
|
模型文件组成: |
|
``` |
|
chatglm3-6b-csc-chinese-lora |
|
├── adapter_config.json |
|
└── adapter_model.bin |
|
``` |
|
|
|
#### 训练参数: |
|
|
|
![loss](train_loss.png) |
|
|
|
- num_epochs: 5 |
|
- per_device_train_batch_size: 6 |
|
- learning_rate: 2e-05 |
|
- best steps: 25100 |
|
- train_loss: 0.0834 |
|
- lr_scheduler_type: linear |
|
- base model: THUDM/chatglm3-6b |
|
- warmup_steps: 50 |
|
- "save_strategy": "steps" |
|
- "save_steps": 500 |
|
- "save_total_limit": 10 |
|
- "bf16": false |
|
- "fp16": true |
|
- "optim": "adamw_torch" |
|
- "ddp_find_unused_parameters": false |
|
- "gradient_checkpointing": true |
|
- max_seq_length: 512 |
|
- max_length: 512 |
|
- prompt_template_name: vicuna |
|
- 6 * V100 32GB, training 48 hours |
|
|
|
### 训练数据集 |
|
训练集包括以下数据: |
|
|
|
- 中文拼写纠错数据集:https://huggingface.co/datasets/shibing624/CSC |
|
- 中文语法纠错数据集:https://github.com/shibing624/pycorrector/tree/llm/examples/data/grammar |
|
- 通用GPT4问答数据集:https://huggingface.co/datasets/shibing624/sharegpt_gpt4 |
|
|
|
|
|
如果需要训练文本纠错模型,请参考[https://github.com/shibing624/pycorrector](https://github.com/shibing624/pycorrector) |
|
|
|
|
|
|
|
## Citation |
|
|
|
```latex |
|
@software{pycorrector, |
|
author = {Ming Xu}, |
|
title = {pycorrector: Text Error Correction Tool}, |
|
year = {2023}, |
|
url = {https://github.com/shibing624/pycorrector}, |
|
} |
|
``` |