|
--- |
|
pipeline_tag: sentence-similarity |
|
license: apache-2.0 |
|
library_name: sentence-transformers |
|
tags: |
|
- sentence-transformers |
|
- feature-extraction |
|
- sentence-similarity |
|
- transformers |
|
- text2vec |
|
- mteb |
|
datasets: |
|
- shibing624/nli-zh-all |
|
language: |
|
- zh |
|
- en |
|
- de |
|
- fr |
|
- it |
|
- nl |
|
- pt |
|
- pl |
|
- ru |
|
metrics: |
|
- spearmanr |
|
model-index: |
|
- name: text2vec-base-multilingual |
|
results: |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en) |
|
config: en |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 70.97014925373134 |
|
- type: ap |
|
value: 33.95151328318672 |
|
- type: f1 |
|
value: 65.14740155705596 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (de) |
|
config: de |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 68.69379014989293 |
|
- type: ap |
|
value: 79.68277579733802 |
|
- type: f1 |
|
value: 66.54960052336921 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (en-ext) |
|
config: en-ext |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 70.90704647676162 |
|
- type: ap |
|
value: 20.747518928580437 |
|
- type: f1 |
|
value: 58.64365465884924 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_counterfactual |
|
name: MTEB AmazonCounterfactualClassification (ja) |
|
config: ja |
|
split: test |
|
revision: e8379541af4e31359cca9fbcf4b00f2671dba205 |
|
metrics: |
|
- type: accuracy |
|
value: 61.605995717344754 |
|
- type: ap |
|
value: 14.135974879487028 |
|
- type: f1 |
|
value: 49.980224800472136 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_polarity |
|
name: MTEB AmazonPolarityClassification |
|
config: default |
|
split: test |
|
revision: e2d317d38cd51312af73b3d32a06d1a08b442046 |
|
metrics: |
|
- type: accuracy |
|
value: 66.103375 |
|
- type: ap |
|
value: 61.10087197664471 |
|
- type: f1 |
|
value: 65.75198509894145 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (en) |
|
config: en |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 33.134 |
|
- type: f1 |
|
value: 32.7905397597083 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (de) |
|
config: de |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 33.388 |
|
- type: f1 |
|
value: 33.190561196873084 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (es) |
|
config: es |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 34.824 |
|
- type: f1 |
|
value: 34.297290157740726 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 33.449999999999996 |
|
- type: f1 |
|
value: 33.08017234412433 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 30.046 |
|
- type: f1 |
|
value: 29.857141661482228 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_reviews_multi |
|
name: MTEB AmazonReviewsClassification (zh) |
|
config: zh |
|
split: test |
|
revision: 1399c76144fd37290681b995c656ef9b2e06e26d |
|
metrics: |
|
- type: accuracy |
|
value: 32.522 |
|
- type: f1 |
|
value: 31.854699911472174 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-p2p |
|
name: MTEB ArxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d |
|
metrics: |
|
- type: v_measure |
|
value: 32.31918856561886 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/arxiv-clustering-s2s |
|
name: MTEB ArxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 |
|
metrics: |
|
- type: v_measure |
|
value: 25.503481615956137 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/askubuntudupquestions-reranking |
|
name: MTEB AskUbuntuDupQuestions |
|
config: default |
|
split: test |
|
revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 |
|
metrics: |
|
- type: map |
|
value: 57.91471462820568 |
|
- type: mrr |
|
value: 71.82990370663501 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/biosses-sts |
|
name: MTEB BIOSSES |
|
config: default |
|
split: test |
|
revision: d3fb88f8f02e40887cd149695127462bbcf29b4a |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.83853315193127 |
|
- type: cos_sim_spearman |
|
value: 66.16174850417771 |
|
- type: euclidean_pearson |
|
value: 56.65313897263153 |
|
- type: euclidean_spearman |
|
value: 52.69156205876939 |
|
- type: manhattan_pearson |
|
value: 56.97282154658304 |
|
- type: manhattan_spearman |
|
value: 53.167476517261015 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/banking77 |
|
name: MTEB Banking77Classification |
|
config: default |
|
split: test |
|
revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 |
|
metrics: |
|
- type: accuracy |
|
value: 78.08441558441558 |
|
- type: f1 |
|
value: 77.99825264827898 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-p2p |
|
name: MTEB BiorxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 |
|
metrics: |
|
- type: v_measure |
|
value: 28.98583420521256 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/biorxiv-clustering-s2s |
|
name: MTEB BiorxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 |
|
metrics: |
|
- type: v_measure |
|
value: 23.195091778460892 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/emotion |
|
name: MTEB EmotionClassification |
|
config: default |
|
split: test |
|
revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 |
|
metrics: |
|
- type: accuracy |
|
value: 43.35 |
|
- type: f1 |
|
value: 38.80269436557695 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/imdb |
|
name: MTEB ImdbClassification |
|
config: default |
|
split: test |
|
revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.348 |
|
- type: ap |
|
value: 55.75065220262251 |
|
- type: f1 |
|
value: 58.72117519082607 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (en) |
|
config: en |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 81.04879160966712 |
|
- type: f1 |
|
value: 80.86889779192701 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (de) |
|
config: de |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 78.59397013243168 |
|
- type: f1 |
|
value: 77.09902761555972 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (es) |
|
config: es |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 79.24282855236824 |
|
- type: f1 |
|
value: 78.75883867079015 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (fr) |
|
config: fr |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 76.16661446915127 |
|
- type: f1 |
|
value: 76.30204722831901 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (hi) |
|
config: hi |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 78.74506991753317 |
|
- type: f1 |
|
value: 77.50560442779701 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_domain |
|
name: MTEB MTOPDomainClassification (th) |
|
config: th |
|
split: test |
|
revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf |
|
metrics: |
|
- type: accuracy |
|
value: 77.67088607594937 |
|
- type: f1 |
|
value: 77.21442956887493 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 62.786137710898316 |
|
- type: f1 |
|
value: 46.23474201126368 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 55.285996055226825 |
|
- type: f1 |
|
value: 37.98039513682919 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 58.67911941294196 |
|
- type: f1 |
|
value: 40.541410807124954 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 53.257124960851854 |
|
- type: f1 |
|
value: 38.42982319259366 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 59.62352097525995 |
|
- type: f1 |
|
value: 41.28886486568534 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/mtop_intent |
|
name: MTEB MTOPIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba |
|
metrics: |
|
- type: accuracy |
|
value: 58.799276672694404 |
|
- type: f1 |
|
value: 43.68379466247341 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (af) |
|
config: af |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 45.42030934767989 |
|
- type: f1 |
|
value: 44.12201543566376 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (am) |
|
config: am |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 37.67652992602556 |
|
- type: f1 |
|
value: 35.422091900843164 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 45.02353732347007 |
|
- type: f1 |
|
value: 41.852484084738194 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (az) |
|
config: az |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 48.70880968392737 |
|
- type: f1 |
|
value: 46.904360615435046 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 43.78950907868191 |
|
- type: f1 |
|
value: 41.58872353920405 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 28.759246805648957 |
|
- type: f1 |
|
value: 27.41182001374226 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (da) |
|
config: da |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.74176193678547 |
|
- type: f1 |
|
value: 53.82727354182497 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (de) |
|
config: de |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.55682582380632 |
|
- type: f1 |
|
value: 49.41963627941866 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (el) |
|
config: el |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.46940147948891 |
|
- type: f1 |
|
value: 55.28178711367465 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (en) |
|
config: en |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 63.83322125084063 |
|
- type: f1 |
|
value: 61.836172900845554 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (es) |
|
config: es |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.27505043712172 |
|
- type: f1 |
|
value: 57.642436374361154 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.05178211163417 |
|
- type: f1 |
|
value: 56.858998820504056 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.357094821788834 |
|
- type: f1 |
|
value: 54.79711189260453 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.79959650302623 |
|
- type: f1 |
|
value: 57.59158671719513 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (he) |
|
config: he |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.1768661735037 |
|
- type: f1 |
|
value: 48.886397276270515 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.06455951580362 |
|
- type: f1 |
|
value: 55.01530952684585 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.3591123066577 |
|
- type: f1 |
|
value: 55.9277783370191 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.108271687962336 |
|
- type: f1 |
|
value: 51.195023400664596 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (id) |
|
config: id |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.26832548755883 |
|
- type: f1 |
|
value: 56.60774065423401 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (is) |
|
config: is |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 35.806993947545394 |
|
- type: f1 |
|
value: 34.290418953173294 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (it) |
|
config: it |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.27841291190315 |
|
- type: f1 |
|
value: 56.9438998642419 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.78009414929389 |
|
- type: f1 |
|
value: 59.15780842483667 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 31.153328850033624 |
|
- type: f1 |
|
value: 30.11004596099605 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 44.50235373234701 |
|
- type: f1 |
|
value: 44.040585262624745 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (km) |
|
config: km |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 40.99193006052455 |
|
- type: f1 |
|
value: 39.505480119272484 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 46.95696032279758 |
|
- type: f1 |
|
value: 43.093638940785326 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.73100201748486 |
|
- type: f1 |
|
value: 52.79750744404114 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.865501008742434 |
|
- type: f1 |
|
value: 53.64798408964839 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 47.891728312037664 |
|
- type: f1 |
|
value: 45.261229414636055 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.2259583053127 |
|
- type: f1 |
|
value: 50.5903419246987 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.277067921990586 |
|
- type: f1 |
|
value: 52.472042479965886 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (my) |
|
config: my |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 51.95696032279757 |
|
- type: f1 |
|
value: 49.79330411854258 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.63685272360457 |
|
- type: f1 |
|
value: 52.81267480650003 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.451916610625425 |
|
- type: f1 |
|
value: 57.34790386645091 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.91055817081372 |
|
- type: f1 |
|
value: 56.39195048528157 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.84196368527236 |
|
- type: f1 |
|
value: 58.72244763127063 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.04102219233354 |
|
- type: f1 |
|
value: 55.67040186148946 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.01613987895091 |
|
- type: f1 |
|
value: 57.203949825484855 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.35843981170141 |
|
- type: f1 |
|
value: 54.18656338999773 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.47948890383322 |
|
- type: f1 |
|
value: 54.772224557130954 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 58.43981170141224 |
|
- type: f1 |
|
value: 56.09260971364242 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 33.9609952925353 |
|
- type: f1 |
|
value: 33.18853392353405 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 44.29388029589778 |
|
- type: f1 |
|
value: 41.51986533284474 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (te) |
|
config: te |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 47.13517148621385 |
|
- type: f1 |
|
value: 43.94784138379624 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (th) |
|
config: th |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 56.856086079354405 |
|
- type: f1 |
|
value: 56.618177384748456 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 35.35978480161398 |
|
- type: f1 |
|
value: 34.060680080365046 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 59.630127774041696 |
|
- type: f1 |
|
value: 57.46288652988266 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 52.7908540685945 |
|
- type: f1 |
|
value: 51.46934239116157 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 54.6469401479489 |
|
- type: f1 |
|
value: 53.9903066185816 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 60.85743106926698 |
|
- type: f1 |
|
value: 59.31579548450755 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_intent |
|
name: MTEB MassiveIntentClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 |
|
metrics: |
|
- type: accuracy |
|
value: 57.46805648957633 |
|
- type: f1 |
|
value: 57.48469733657326 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (af) |
|
config: af |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.86415601882985 |
|
- type: f1 |
|
value: 49.41696672602645 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (am) |
|
config: am |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 41.183591123066584 |
|
- type: f1 |
|
value: 40.04563865770774 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ar) |
|
config: ar |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.08069939475455 |
|
- type: f1 |
|
value: 50.724800165846126 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (az) |
|
config: az |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 51.287827841291204 |
|
- type: f1 |
|
value: 50.72873776739851 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (bn) |
|
config: bn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 46.53328850033624 |
|
- type: f1 |
|
value: 45.93317866639667 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (cy) |
|
config: cy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 34.347679892400805 |
|
- type: f1 |
|
value: 31.941581141280828 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (da) |
|
config: da |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.073301950235376 |
|
- type: f1 |
|
value: 62.228728940111054 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (de) |
|
config: de |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.398789509078675 |
|
- type: f1 |
|
value: 54.80778341609032 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (el) |
|
config: el |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 61.79892400806993 |
|
- type: f1 |
|
value: 60.69430756982446 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (en) |
|
config: en |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 66.96368527236046 |
|
- type: f1 |
|
value: 66.5893927997656 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (es) |
|
config: es |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.21250840618695 |
|
- type: f1 |
|
value: 62.347177794128925 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fa) |
|
config: fa |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.43779421654339 |
|
- type: f1 |
|
value: 61.307701312085605 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fi) |
|
config: fi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 61.09952925353059 |
|
- type: f1 |
|
value: 60.313907927386914 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (fr) |
|
config: fr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.38601210490922 |
|
- type: f1 |
|
value: 63.05968938353488 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (he) |
|
config: he |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.2878278412912 |
|
- type: f1 |
|
value: 55.92927644838597 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hi) |
|
config: hi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.62878278412912 |
|
- type: f1 |
|
value: 60.25299253652635 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hu) |
|
config: hu |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.28850033624748 |
|
- type: f1 |
|
value: 62.77053246337031 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (hy) |
|
config: hy |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 54.875588433086754 |
|
- type: f1 |
|
value: 54.30717357279134 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (id) |
|
config: id |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 61.99394754539341 |
|
- type: f1 |
|
value: 61.73085530883037 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (is) |
|
config: is |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 38.581035642232685 |
|
- type: f1 |
|
value: 36.96287269695893 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (it) |
|
config: it |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.350369872225976 |
|
- type: f1 |
|
value: 61.807327324823966 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ja) |
|
config: ja |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 65.17148621385338 |
|
- type: f1 |
|
value: 65.29620144656751 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (jv) |
|
config: jv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 36.12642905178212 |
|
- type: f1 |
|
value: 35.334393048479484 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ka) |
|
config: ka |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.26899798251513 |
|
- type: f1 |
|
value: 49.041065960139434 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (km) |
|
config: km |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 44.24344317417619 |
|
- type: f1 |
|
value: 42.42177854872125 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (kn) |
|
config: kn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 47.370544720914594 |
|
- type: f1 |
|
value: 46.589722581465324 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ko) |
|
config: ko |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 58.89038332212508 |
|
- type: f1 |
|
value: 57.753607921990394 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (lv) |
|
config: lv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.506388702084756 |
|
- type: f1 |
|
value: 56.0485860423295 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ml) |
|
config: ml |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 50.06388702084734 |
|
- type: f1 |
|
value: 50.109364641824584 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (mn) |
|
config: mn |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 55.053799596503026 |
|
- type: f1 |
|
value: 54.490665705666686 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ms) |
|
config: ms |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 59.77135171486213 |
|
- type: f1 |
|
value: 58.2808650158803 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (my) |
|
config: my |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 55.71620712844654 |
|
- type: f1 |
|
value: 53.863034882475304 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nb) |
|
config: nb |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.26227303295225 |
|
- type: f1 |
|
value: 59.86604657147016 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (nl) |
|
config: nl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.3759246805649 |
|
- type: f1 |
|
value: 62.45257339288533 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pl) |
|
config: pl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.552118359112306 |
|
- type: f1 |
|
value: 61.354449605776765 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (pt) |
|
config: pt |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.40753194351043 |
|
- type: f1 |
|
value: 61.98779889528889 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ro) |
|
config: ro |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 60.68258238063214 |
|
- type: f1 |
|
value: 60.59973978976571 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ru) |
|
config: ru |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.31002017484868 |
|
- type: f1 |
|
value: 62.412312268503655 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sl) |
|
config: sl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 61.429051782111635 |
|
- type: f1 |
|
value: 61.60095590401424 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sq) |
|
config: sq |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 62.229320780094156 |
|
- type: f1 |
|
value: 61.02251426747547 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sv) |
|
config: sv |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.42501681237391 |
|
- type: f1 |
|
value: 63.461494430605235 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (sw) |
|
config: sw |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 38.51714862138534 |
|
- type: f1 |
|
value: 37.12466722986362 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ta) |
|
config: ta |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 46.99731002017485 |
|
- type: f1 |
|
value: 45.859147049984834 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (te) |
|
config: te |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 51.01882985877605 |
|
- type: f1 |
|
value: 49.01040173136056 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (th) |
|
config: th |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.234700739744454 |
|
- type: f1 |
|
value: 62.732294595214746 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tl) |
|
config: tl |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 38.72225958305312 |
|
- type: f1 |
|
value: 36.603231928120906 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (tr) |
|
config: tr |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 64.48554135843982 |
|
- type: f1 |
|
value: 63.97380562022752 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (ur) |
|
config: ur |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 56.7955615332885 |
|
- type: f1 |
|
value: 55.95308241204802 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (vi) |
|
config: vi |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 57.06455951580362 |
|
- type: f1 |
|
value: 56.95570494066693 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-CN) |
|
config: zh-CN |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 65.8338937457969 |
|
- type: f1 |
|
value: 65.6778746906008 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/amazon_massive_scenario |
|
name: MTEB MassiveScenarioClassification (zh-TW) |
|
config: zh-TW |
|
split: test |
|
revision: 7d571f92784cd94a019292a1f45445077d0ef634 |
|
metrics: |
|
- type: accuracy |
|
value: 63.369199731002034 |
|
- type: f1 |
|
value: 63.527650116059945 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-p2p |
|
name: MTEB MedrxivClusteringP2P |
|
config: default |
|
split: test |
|
revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 |
|
metrics: |
|
- type: v_measure |
|
value: 29.442504112215538 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/medrxiv-clustering-s2s |
|
name: MTEB MedrxivClusteringS2S |
|
config: default |
|
split: test |
|
revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 |
|
metrics: |
|
- type: v_measure |
|
value: 26.16062814161053 |
|
- task: |
|
type: Retrieval |
|
dataset: |
|
type: quora |
|
name: MTEB QuoraRetrieval |
|
config: default |
|
split: test |
|
revision: None |
|
metrics: |
|
- type: map_at_1 |
|
value: 65.319 |
|
- type: map_at_10 |
|
value: 78.72 |
|
- type: map_at_100 |
|
value: 79.44600000000001 |
|
- type: map_at_1000 |
|
value: 79.469 |
|
- type: map_at_3 |
|
value: 75.693 |
|
- type: map_at_5 |
|
value: 77.537 |
|
- type: mrr_at_1 |
|
value: 75.24 |
|
- type: mrr_at_10 |
|
value: 82.304 |
|
- type: mrr_at_100 |
|
value: 82.485 |
|
- type: mrr_at_1000 |
|
value: 82.489 |
|
- type: mrr_at_3 |
|
value: 81.002 |
|
- type: mrr_at_5 |
|
value: 81.817 |
|
- type: ndcg_at_1 |
|
value: 75.26 |
|
- type: ndcg_at_10 |
|
value: 83.07 |
|
- type: ndcg_at_100 |
|
value: 84.829 |
|
- type: ndcg_at_1000 |
|
value: 85.087 |
|
- type: ndcg_at_3 |
|
value: 79.67699999999999 |
|
- type: ndcg_at_5 |
|
value: 81.42 |
|
- type: precision_at_1 |
|
value: 75.26 |
|
- type: precision_at_10 |
|
value: 12.697 |
|
- type: precision_at_100 |
|
value: 1.4829999999999999 |
|
- type: precision_at_1000 |
|
value: 0.154 |
|
- type: precision_at_3 |
|
value: 34.849999999999994 |
|
- type: precision_at_5 |
|
value: 23.054 |
|
- type: recall_at_1 |
|
value: 65.319 |
|
- type: recall_at_10 |
|
value: 91.551 |
|
- type: recall_at_100 |
|
value: 98.053 |
|
- type: recall_at_1000 |
|
value: 99.516 |
|
- type: recall_at_3 |
|
value: 81.819 |
|
- type: recall_at_5 |
|
value: 86.66199999999999 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering |
|
name: MTEB RedditClustering |
|
config: default |
|
split: test |
|
revision: 24640382cdbf8abc73003fb0fa6d111a705499eb |
|
metrics: |
|
- type: v_measure |
|
value: 31.249791587189996 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/reddit-clustering-p2p |
|
name: MTEB RedditClusteringP2P |
|
config: default |
|
split: test |
|
revision: 282350215ef01743dc01b456c7f5241fa8937f16 |
|
metrics: |
|
- type: v_measure |
|
value: 43.302922383029816 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sickr-sts |
|
name: MTEB SICK-R |
|
config: default |
|
split: test |
|
revision: a6ea5a8cab320b040a23452cc28066d9beae2cee |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.80670811345861 |
|
- type: cos_sim_spearman |
|
value: 79.97373018384307 |
|
- type: euclidean_pearson |
|
value: 83.40205934125837 |
|
- type: euclidean_spearman |
|
value: 79.73331008251854 |
|
- type: manhattan_pearson |
|
value: 83.3320983393412 |
|
- type: manhattan_spearman |
|
value: 79.677919746045 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts12-sts |
|
name: MTEB STS12 |
|
config: default |
|
split: test |
|
revision: a0d554a64d88156834ff5ae9920b964011b16384 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.3816087627948 |
|
- type: cos_sim_spearman |
|
value: 80.91314664846955 |
|
- type: euclidean_pearson |
|
value: 85.10603071031096 |
|
- type: euclidean_spearman |
|
value: 79.42663939501841 |
|
- type: manhattan_pearson |
|
value: 85.16096376014066 |
|
- type: manhattan_spearman |
|
value: 79.51936545543191 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts13-sts |
|
name: MTEB STS13 |
|
config: default |
|
split: test |
|
revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 80.44665329940209 |
|
- type: cos_sim_spearman |
|
value: 82.86479010707745 |
|
- type: euclidean_pearson |
|
value: 84.06719627734672 |
|
- type: euclidean_spearman |
|
value: 84.9356099976297 |
|
- type: manhattan_pearson |
|
value: 84.10370009572624 |
|
- type: manhattan_spearman |
|
value: 84.96828040546536 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts14-sts |
|
name: MTEB STS14 |
|
config: default |
|
split: test |
|
revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.05704260568437 |
|
- type: cos_sim_spearman |
|
value: 87.36399473803172 |
|
- type: euclidean_pearson |
|
value: 86.8895170159388 |
|
- type: euclidean_spearman |
|
value: 87.16246440866921 |
|
- type: manhattan_pearson |
|
value: 86.80814774538997 |
|
- type: manhattan_spearman |
|
value: 87.09320142699522 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts15-sts |
|
name: MTEB STS15 |
|
config: default |
|
split: test |
|
revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 85.97825118945852 |
|
- type: cos_sim_spearman |
|
value: 88.31438033558268 |
|
- type: euclidean_pearson |
|
value: 87.05174694758092 |
|
- type: euclidean_spearman |
|
value: 87.80659468392355 |
|
- type: manhattan_pearson |
|
value: 86.98831322198717 |
|
- type: manhattan_spearman |
|
value: 87.72820615049285 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts16-sts |
|
name: MTEB STS16 |
|
config: default |
|
split: test |
|
revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.68745420126719 |
|
- type: cos_sim_spearman |
|
value: 81.6058424699445 |
|
- type: euclidean_pearson |
|
value: 81.16540133861879 |
|
- type: euclidean_spearman |
|
value: 81.86377535458067 |
|
- type: manhattan_pearson |
|
value: 81.13813317937021 |
|
- type: manhattan_spearman |
|
value: 81.87079962857256 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ko-ko) |
|
config: ko-ko |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 68.06192660936868 |
|
- type: cos_sim_spearman |
|
value: 68.2376353514075 |
|
- type: euclidean_pearson |
|
value: 60.68326946956215 |
|
- type: euclidean_spearman |
|
value: 59.19352349785952 |
|
- type: manhattan_pearson |
|
value: 60.6592944683418 |
|
- type: manhattan_spearman |
|
value: 59.167534419270865 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (ar-ar) |
|
config: ar-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.78098264855684 |
|
- type: cos_sim_spearman |
|
value: 78.02670452969812 |
|
- type: euclidean_pearson |
|
value: 77.26694463661255 |
|
- type: euclidean_spearman |
|
value: 77.47007626009587 |
|
- type: manhattan_pearson |
|
value: 77.25070088632027 |
|
- type: manhattan_spearman |
|
value: 77.36368265830724 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-ar) |
|
config: en-ar |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 78.45418506379532 |
|
- type: cos_sim_spearman |
|
value: 78.60412019902428 |
|
- type: euclidean_pearson |
|
value: 79.90303710850512 |
|
- type: euclidean_spearman |
|
value: 78.67123625004957 |
|
- type: manhattan_pearson |
|
value: 80.09189580897753 |
|
- type: manhattan_spearman |
|
value: 79.02484481441483 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-de) |
|
config: en-de |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 82.35556731232779 |
|
- type: cos_sim_spearman |
|
value: 81.48249735354844 |
|
- type: euclidean_pearson |
|
value: 81.66748026636621 |
|
- type: euclidean_spearman |
|
value: 80.35571574338547 |
|
- type: manhattan_pearson |
|
value: 81.38214732806365 |
|
- type: manhattan_spearman |
|
value: 79.9018202958774 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-en) |
|
config: en-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 86.4527703176897 |
|
- type: cos_sim_spearman |
|
value: 85.81084095829584 |
|
- type: euclidean_pearson |
|
value: 86.43489162324457 |
|
- type: euclidean_spearman |
|
value: 85.27110976093296 |
|
- type: manhattan_pearson |
|
value: 86.43674259444512 |
|
- type: manhattan_spearman |
|
value: 85.05719308026032 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (en-tr) |
|
config: en-tr |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 76.00411240034492 |
|
- type: cos_sim_spearman |
|
value: 76.33887356560854 |
|
- type: euclidean_pearson |
|
value: 76.81730660019446 |
|
- type: euclidean_spearman |
|
value: 75.04432185451306 |
|
- type: manhattan_pearson |
|
value: 77.22298813168995 |
|
- type: manhattan_spearman |
|
value: 75.56420330256725 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-en) |
|
config: es-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.1447136836213 |
|
- type: cos_sim_spearman |
|
value: 81.80823850788917 |
|
- type: euclidean_pearson |
|
value: 80.84505734814422 |
|
- type: euclidean_spearman |
|
value: 81.714168092736 |
|
- type: manhattan_pearson |
|
value: 80.84713816174187 |
|
- type: manhattan_spearman |
|
value: 81.61267814749516 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (es-es) |
|
config: es-es |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 87.01257457052873 |
|
- type: cos_sim_spearman |
|
value: 87.91146458004216 |
|
- type: euclidean_pearson |
|
value: 88.36771859717994 |
|
- type: euclidean_spearman |
|
value: 87.73182474597515 |
|
- type: manhattan_pearson |
|
value: 88.26551451003671 |
|
- type: manhattan_spearman |
|
value: 87.71675151388992 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (fr-en) |
|
config: fr-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 79.20121618382373 |
|
- type: cos_sim_spearman |
|
value: 78.05794691968603 |
|
- type: euclidean_pearson |
|
value: 79.93819925682054 |
|
- type: euclidean_spearman |
|
value: 78.00586118701553 |
|
- type: manhattan_pearson |
|
value: 80.05598625820885 |
|
- type: manhattan_spearman |
|
value: 78.04802948866832 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (it-en) |
|
config: it-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.51743373871778 |
|
- type: cos_sim_spearman |
|
value: 80.98266651818703 |
|
- type: euclidean_pearson |
|
value: 81.11875722505269 |
|
- type: euclidean_spearman |
|
value: 79.45188413284538 |
|
- type: manhattan_pearson |
|
value: 80.7988457619225 |
|
- type: manhattan_spearman |
|
value: 79.49643569311485 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts17-crosslingual-sts |
|
name: MTEB STS17 (nl-en) |
|
config: nl-en |
|
split: test |
|
revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 81.78679924046351 |
|
- type: cos_sim_spearman |
|
value: 80.9986574147117 |
|
- type: euclidean_pearson |
|
value: 82.09130079135713 |
|
- type: euclidean_spearman |
|
value: 80.66215667390159 |
|
- type: manhattan_pearson |
|
value: 82.0328610549654 |
|
- type: manhattan_spearman |
|
value: 80.31047226932408 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (en) |
|
config: en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 58.08082172994642 |
|
- type: cos_sim_spearman |
|
value: 62.9940530222459 |
|
- type: euclidean_pearson |
|
value: 58.47927303460365 |
|
- type: euclidean_spearman |
|
value: 60.8440317609258 |
|
- type: manhattan_pearson |
|
value: 58.32438211697841 |
|
- type: manhattan_spearman |
|
value: 60.69642636776064 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de) |
|
config: de |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 33.83985707464123 |
|
- type: cos_sim_spearman |
|
value: 46.89093209603036 |
|
- type: euclidean_pearson |
|
value: 34.63602187576556 |
|
- type: euclidean_spearman |
|
value: 46.31087228200712 |
|
- type: manhattan_pearson |
|
value: 34.66899391543166 |
|
- type: manhattan_spearman |
|
value: 46.33049538425276 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es) |
|
config: es |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 51.61315965767736 |
|
- type: cos_sim_spearman |
|
value: 58.9434266730386 |
|
- type: euclidean_pearson |
|
value: 50.35885602217862 |
|
- type: euclidean_spearman |
|
value: 58.238679883286025 |
|
- type: manhattan_pearson |
|
value: 53.01732044381151 |
|
- type: manhattan_spearman |
|
value: 58.10482351761412 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl) |
|
config: pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.771738440430177 |
|
- type: cos_sim_spearman |
|
value: 34.807259227816054 |
|
- type: euclidean_pearson |
|
value: 17.82657835823811 |
|
- type: euclidean_spearman |
|
value: 34.27912898498941 |
|
- type: manhattan_pearson |
|
value: 19.121527758886312 |
|
- type: manhattan_spearman |
|
value: 34.4940050226265 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (tr) |
|
config: tr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 52.8354704676683 |
|
- type: cos_sim_spearman |
|
value: 57.28629534815841 |
|
- type: euclidean_pearson |
|
value: 54.10329332004385 |
|
- type: euclidean_spearman |
|
value: 58.15030615859976 |
|
- type: manhattan_pearson |
|
value: 55.42372087433115 |
|
- type: manhattan_spearman |
|
value: 57.52270736584036 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ar) |
|
config: ar |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 31.01976557986924 |
|
- type: cos_sim_spearman |
|
value: 54.506959483927616 |
|
- type: euclidean_pearson |
|
value: 36.917863022119086 |
|
- type: euclidean_spearman |
|
value: 53.750194241538566 |
|
- type: manhattan_pearson |
|
value: 37.200177833241085 |
|
- type: manhattan_spearman |
|
value: 53.507659188082535 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (ru) |
|
config: ru |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 46.38635647225934 |
|
- type: cos_sim_spearman |
|
value: 54.50892732637536 |
|
- type: euclidean_pearson |
|
value: 40.8331015184763 |
|
- type: euclidean_spearman |
|
value: 53.142903182230924 |
|
- type: manhattan_pearson |
|
value: 43.07655692906317 |
|
- type: manhattan_spearman |
|
value: 53.5833474125901 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh) |
|
config: zh |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 60.52525456662916 |
|
- type: cos_sim_spearman |
|
value: 63.23975489531082 |
|
- type: euclidean_pearson |
|
value: 58.989191722317514 |
|
- type: euclidean_spearman |
|
value: 62.536326639863894 |
|
- type: manhattan_pearson |
|
value: 61.32982866201855 |
|
- type: manhattan_spearman |
|
value: 63.068262822520516 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr) |
|
config: fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 59.63798684577696 |
|
- type: cos_sim_spearman |
|
value: 74.09937723367189 |
|
- type: euclidean_pearson |
|
value: 63.77494904383906 |
|
- type: euclidean_spearman |
|
value: 71.15932571292481 |
|
- type: manhattan_pearson |
|
value: 63.69646122775205 |
|
- type: manhattan_spearman |
|
value: 70.54960698541632 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-en) |
|
config: de-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 36.50262468726711 |
|
- type: cos_sim_spearman |
|
value: 45.00322499674274 |
|
- type: euclidean_pearson |
|
value: 32.58759216581778 |
|
- type: euclidean_spearman |
|
value: 40.13720951315429 |
|
- type: manhattan_pearson |
|
value: 34.88422299605277 |
|
- type: manhattan_spearman |
|
value: 40.63516862200963 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-en) |
|
config: es-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 56.498552617040275 |
|
- type: cos_sim_spearman |
|
value: 67.71358426124443 |
|
- type: euclidean_pearson |
|
value: 57.16474781778287 |
|
- type: euclidean_spearman |
|
value: 65.721515493531 |
|
- type: manhattan_pearson |
|
value: 59.25227610738926 |
|
- type: manhattan_spearman |
|
value: 65.89743680340739 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (it) |
|
config: it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 55.97978814727984 |
|
- type: cos_sim_spearman |
|
value: 65.85821395092104 |
|
- type: euclidean_pearson |
|
value: 59.11117270978519 |
|
- type: euclidean_spearman |
|
value: 64.50062069934965 |
|
- type: manhattan_pearson |
|
value: 59.4436213778161 |
|
- type: manhattan_spearman |
|
value: 64.4003273074382 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (pl-en) |
|
config: pl-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 58.00873192515712 |
|
- type: cos_sim_spearman |
|
value: 60.167708809138745 |
|
- type: euclidean_pearson |
|
value: 56.91950637760252 |
|
- type: euclidean_spearman |
|
value: 58.50593399441014 |
|
- type: manhattan_pearson |
|
value: 58.683747352584994 |
|
- type: manhattan_spearman |
|
value: 59.38110066799761 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (zh-en) |
|
config: zh-en |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 54.26020658151187 |
|
- type: cos_sim_spearman |
|
value: 61.29236187204147 |
|
- type: euclidean_pearson |
|
value: 55.993896804147056 |
|
- type: euclidean_spearman |
|
value: 58.654928232615354 |
|
- type: manhattan_pearson |
|
value: 56.612492816099426 |
|
- type: manhattan_spearman |
|
value: 58.65144067094258 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (es-it) |
|
config: es-it |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 49.13817835368122 |
|
- type: cos_sim_spearman |
|
value: 50.78524216975442 |
|
- type: euclidean_pearson |
|
value: 46.56046454501862 |
|
- type: euclidean_spearman |
|
value: 50.3935060082369 |
|
- type: manhattan_pearson |
|
value: 48.0232348418531 |
|
- type: manhattan_spearman |
|
value: 50.79528358464199 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-fr) |
|
config: de-fr |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 44.274388638585286 |
|
- type: cos_sim_spearman |
|
value: 49.43124017389838 |
|
- type: euclidean_pearson |
|
value: 42.45909582681174 |
|
- type: euclidean_spearman |
|
value: 49.661383797129055 |
|
- type: manhattan_pearson |
|
value: 42.5771970142383 |
|
- type: manhattan_spearman |
|
value: 50.14423414390715 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (de-pl) |
|
config: de-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 26.119500839749776 |
|
- type: cos_sim_spearman |
|
value: 39.324070169024424 |
|
- type: euclidean_pearson |
|
value: 35.83247077201831 |
|
- type: euclidean_spearman |
|
value: 42.61903924348457 |
|
- type: manhattan_pearson |
|
value: 35.50415034487894 |
|
- type: manhattan_spearman |
|
value: 41.87998075949351 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/sts22-crosslingual-sts |
|
name: MTEB STS22 (fr-pl) |
|
config: fr-pl |
|
split: test |
|
revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 72.62575835691209 |
|
- type: cos_sim_spearman |
|
value: 73.24670207647144 |
|
- type: euclidean_pearson |
|
value: 78.07793323914657 |
|
- type: euclidean_spearman |
|
value: 73.24670207647144 |
|
- type: manhattan_pearson |
|
value: 77.51429306378206 |
|
- type: manhattan_spearman |
|
value: 73.24670207647144 |
|
- task: |
|
type: STS |
|
dataset: |
|
type: mteb/stsbenchmark-sts |
|
name: MTEB STSBenchmark |
|
config: default |
|
split: test |
|
revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 84.09375596849891 |
|
- type: cos_sim_spearman |
|
value: 86.44881302053585 |
|
- type: euclidean_pearson |
|
value: 84.71259163967213 |
|
- type: euclidean_spearman |
|
value: 85.63661992344069 |
|
- type: manhattan_pearson |
|
value: 84.64466537502614 |
|
- type: manhattan_spearman |
|
value: 85.53769949940238 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/scidocs-reranking |
|
name: MTEB SciDocsRR |
|
config: default |
|
split: test |
|
revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab |
|
metrics: |
|
- type: map |
|
value: 70.2056154684549 |
|
- type: mrr |
|
value: 89.52703161036494 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/sprintduplicatequestions-pairclassification |
|
name: MTEB SprintDuplicateQuestions |
|
config: default |
|
split: test |
|
revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 99.57623762376238 |
|
- type: cos_sim_ap |
|
value: 83.53051588811371 |
|
- type: cos_sim_f1 |
|
value: 77.72704211060375 |
|
- type: cos_sim_precision |
|
value: 78.88774459320288 |
|
- type: cos_sim_recall |
|
value: 76.6 |
|
- type: dot_accuracy |
|
value: 99.06435643564356 |
|
- type: dot_ap |
|
value: 27.003124923857463 |
|
- type: dot_f1 |
|
value: 34.125269978401725 |
|
- type: dot_precision |
|
value: 37.08920187793427 |
|
- type: dot_recall |
|
value: 31.6 |
|
- type: euclidean_accuracy |
|
value: 99.61485148514852 |
|
- type: euclidean_ap |
|
value: 85.47332647001774 |
|
- type: euclidean_f1 |
|
value: 80.0808897876643 |
|
- type: euclidean_precision |
|
value: 80.98159509202453 |
|
- type: euclidean_recall |
|
value: 79.2 |
|
- type: manhattan_accuracy |
|
value: 99.61683168316831 |
|
- type: manhattan_ap |
|
value: 85.41969859598552 |
|
- type: manhattan_f1 |
|
value: 79.77755308392315 |
|
- type: manhattan_precision |
|
value: 80.67484662576688 |
|
- type: manhattan_recall |
|
value: 78.9 |
|
- type: max_accuracy |
|
value: 99.61683168316831 |
|
- type: max_ap |
|
value: 85.47332647001774 |
|
- type: max_f1 |
|
value: 80.0808897876643 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering |
|
name: MTEB StackExchangeClustering |
|
config: default |
|
split: test |
|
revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 |
|
metrics: |
|
- type: v_measure |
|
value: 34.35688940053467 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/stackexchange-clustering-p2p |
|
name: MTEB StackExchangeClusteringP2P |
|
config: default |
|
split: test |
|
revision: 815ca46b2622cec33ccafc3735d572c266efdb44 |
|
metrics: |
|
- type: v_measure |
|
value: 30.64427069276576 |
|
- task: |
|
type: Reranking |
|
dataset: |
|
type: mteb/stackoverflowdupquestions-reranking |
|
name: MTEB StackOverflowDupQuestions |
|
config: default |
|
split: test |
|
revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 |
|
metrics: |
|
- type: map |
|
value: 44.89500754900078 |
|
- type: mrr |
|
value: 45.33215558950853 |
|
- task: |
|
type: Summarization |
|
dataset: |
|
type: mteb/summeval |
|
name: MTEB SummEval |
|
config: default |
|
split: test |
|
revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c |
|
metrics: |
|
- type: cos_sim_pearson |
|
value: 30.653069624224084 |
|
- type: cos_sim_spearman |
|
value: 30.10187112430319 |
|
- type: dot_pearson |
|
value: 28.966278202103666 |
|
- type: dot_spearman |
|
value: 28.342234095507767 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/toxic_conversations_50k |
|
name: MTEB ToxicConversationsClassification |
|
config: default |
|
split: test |
|
revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c |
|
metrics: |
|
- type: accuracy |
|
value: 65.96839999999999 |
|
- type: ap |
|
value: 11.846327590186444 |
|
- type: f1 |
|
value: 50.518102944693574 |
|
- task: |
|
type: Classification |
|
dataset: |
|
type: mteb/tweet_sentiment_extraction |
|
name: MTEB TweetSentimentExtractionClassification |
|
config: default |
|
split: test |
|
revision: d604517c81ca91fe16a244d1248fc021f9ecee7a |
|
metrics: |
|
- type: accuracy |
|
value: 55.220713073005086 |
|
- type: f1 |
|
value: 55.47856175692088 |
|
- task: |
|
type: Clustering |
|
dataset: |
|
type: mteb/twentynewsgroups-clustering |
|
name: MTEB TwentyNewsgroupsClustering |
|
config: default |
|
split: test |
|
revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 |
|
metrics: |
|
- type: v_measure |
|
value: 31.581473892235877 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twittersemeval2015-pairclassification |
|
name: MTEB TwitterSemEval2015 |
|
config: default |
|
split: test |
|
revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 82.94093103653812 |
|
- type: cos_sim_ap |
|
value: 62.48963249213361 |
|
- type: cos_sim_f1 |
|
value: 58.9541137429912 |
|
- type: cos_sim_precision |
|
value: 52.05091937765205 |
|
- type: cos_sim_recall |
|
value: 67.96833773087072 |
|
- type: dot_accuracy |
|
value: 78.24998509864696 |
|
- type: dot_ap |
|
value: 40.82371294480071 |
|
- type: dot_f1 |
|
value: 44.711163153786096 |
|
- type: dot_precision |
|
value: 35.475379374419326 |
|
- type: dot_recall |
|
value: 60.4485488126649 |
|
- type: euclidean_accuracy |
|
value: 83.13166835548668 |
|
- type: euclidean_ap |
|
value: 63.459878609769774 |
|
- type: euclidean_f1 |
|
value: 60.337199569532466 |
|
- type: euclidean_precision |
|
value: 55.171659741963694 |
|
- type: euclidean_recall |
|
value: 66.56992084432719 |
|
- type: manhattan_accuracy |
|
value: 83.00649698992669 |
|
- type: manhattan_ap |
|
value: 63.263161177904905 |
|
- type: manhattan_f1 |
|
value: 60.17122874713614 |
|
- type: manhattan_precision |
|
value: 55.40750610703975 |
|
- type: manhattan_recall |
|
value: 65.8311345646438 |
|
- type: max_accuracy |
|
value: 83.13166835548668 |
|
- type: max_ap |
|
value: 63.459878609769774 |
|
- type: max_f1 |
|
value: 60.337199569532466 |
|
- task: |
|
type: PairClassification |
|
dataset: |
|
type: mteb/twitterurlcorpus-pairclassification |
|
name: MTEB TwitterURLCorpus |
|
config: default |
|
split: test |
|
revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf |
|
metrics: |
|
- type: cos_sim_accuracy |
|
value: 87.80416812201653 |
|
- type: cos_sim_ap |
|
value: 83.45540469219863 |
|
- type: cos_sim_f1 |
|
value: 75.58836427422892 |
|
- type: cos_sim_precision |
|
value: 71.93934335002783 |
|
- type: cos_sim_recall |
|
value: 79.62734832152756 |
|
- type: dot_accuracy |
|
value: 83.04226336011176 |
|
- type: dot_ap |
|
value: 70.63007268018524 |
|
- type: dot_f1 |
|
value: 65.35980325765405 |
|
- type: dot_precision |
|
value: 60.84677151768532 |
|
- type: dot_recall |
|
value: 70.59593470896212 |
|
- type: euclidean_accuracy |
|
value: 87.60430007373773 |
|
- type: euclidean_ap |
|
value: 83.10068502536592 |
|
- type: euclidean_f1 |
|
value: 75.02510506936439 |
|
- type: euclidean_precision |
|
value: 72.56637168141593 |
|
- type: euclidean_recall |
|
value: 77.65629812134279 |
|
- type: manhattan_accuracy |
|
value: 87.60041914076145 |
|
- type: manhattan_ap |
|
value: 83.05480769911229 |
|
- type: manhattan_f1 |
|
value: 74.98522895125554 |
|
- type: manhattan_precision |
|
value: 72.04797047970479 |
|
- type: manhattan_recall |
|
value: 78.17215891592238 |
|
- type: max_accuracy |
|
value: 87.80416812201653 |
|
- type: max_ap |
|
value: 83.45540469219863 |
|
- type: max_f1 |
|
value: 75.58836427422892 |
|
--- |
|
# shibing624/text2vec-base-multilingual |
|
This is a CoSENT(Cosine Sentence) model: shibing624/text2vec-base-multilingual. |
|
|
|
It maps sentences to a 384 dimensional dense vector space and can be used for tasks |
|
like sentence embeddings, text matching or semantic search. |
|
|
|
|
|
|
|
- training dataset: https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset |
|
- base model: sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 |
|
- max_seq_length: 256 |
|
- best epoch: 4 |
|
- sentence embedding dim: 384 |
|
|
|
## Evaluation |
|
For an automated evaluation of this model, see the *Evaluation Benchmark*: [text2vec](https://github.com/shibing624/text2vec) |
|
## Languages |
|
Available languages are: de, en, es, fr, it, nl, pl, pt, ru, zh |
|
|
|
### Release Models |
|
|
|
- 本项目release模型的中文匹配评测结果: |
|
|
|
| Arch | BaseModel | Model | ATEC | BQ | LCQMC | PAWSX | STS-B | SOHU-dd | SOHU-dc | Avg | QPS | |
|
|:-----------|:-------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----:|:-----:|:-----:|:-----:|:-----:|:-------:|:-------:|:---------:|:-----:| |
|
| Word2Vec | word2vec | [w2v-light-tencent-chinese](https://ai.tencent.com/ailab/nlp/en/download.html) | 20.00 | 31.49 | 59.46 | 2.57 | 55.78 | 55.04 | 20.70 | 35.03 | 23769 | |
|
| SBERT | xlm-roberta-base | [sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) | 18.42 | 38.52 | 63.96 | 10.14 | 78.90 | 63.01 | 52.28 | 46.46 | 3138 | |
|
| Instructor | hfl/chinese-roberta-wwm-ext | [moka-ai/m3e-base](https://huggingface.co/moka-ai/m3e-base) | 41.27 | 63.81 | 74.87 | 12.20 | 76.96 | 75.83 | 60.55 | 57.93 | 2980 | |
|
| CoSENT | hfl/chinese-macbert-base | [shibing624/text2vec-base-chinese](https://huggingface.co/shibing624/text2vec-base-chinese) | 31.93 | 42.67 | 70.16 | 17.21 | 79.30 | 70.27 | 50.42 | 51.61 | 3008 | |
|
| CoSENT | hfl/chinese-lert-large | [GanymedeNil/text2vec-large-chinese](https://huggingface.co/GanymedeNil/text2vec-large-chinese) | 32.61 | 44.59 | 69.30 | 14.51 | 79.44 | 73.01 | 59.04 | 53.12 | 2092 | |
|
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-sentence](https://huggingface.co/shibing624/text2vec-base-chinese-sentence) | 43.37 | 61.43 | 73.48 | 38.90 | 78.25 | 70.60 | 53.08 | 59.87 | 3089 | |
|
| CoSENT | nghuyong/ernie-3.0-base-zh | [shibing624/text2vec-base-chinese-paraphrase](https://huggingface.co/shibing624/text2vec-base-chinese-paraphrase) | 44.89 | 63.58 | 74.24 | 40.90 | 78.93 | 76.70 | 63.30 | **63.08** | 3066 | |
|
| CoSENT | sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2 | [shibing624/text2vec-base-multilingual](https://huggingface.co/shibing624/text2vec-base-multilingual) | 32.39 | 50.33 | 65.64 | 32.56 | 74.45 | 68.88 | 51.17 | 53.67 | 4004 | |
|
|
|
|
|
说明: |
|
- 结果评测指标:spearman系数 |
|
- `shibing624/text2vec-base-chinese`模型,是用CoSENT方法训练,基于`hfl/chinese-macbert-base`在中文STS-B数据训练得到,并在中文STS-B测试集评估达到较好效果,运行[examples/training_sup_text_matching_model.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model.py)代码可训练模型,模型文件已经上传HF model hub,中文通用语义匹配任务推荐使用 |
|
- `shibing624/text2vec-base-chinese-sentence`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)训练得到,并在中文各NLI测试集评估达到较好效果,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2s(句子vs句子)语义匹配任务推荐使用 |
|
- `shibing624/text2vec-base-chinese-paraphrase`模型,是用CoSENT方法训练,基于`nghuyong/ernie-3.0-base-zh`用人工挑选后的中文STS数据集[shibing624/nli-zh-all/text2vec-base-chinese-paraphrase-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-paraphrase-dataset),数据集相对于[shibing624/nli-zh-all/text2vec-base-chinese-sentence-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-chinese-sentence-dataset)加入了s2p(sentence to paraphrase)数据,强化了其长文本的表征能力,并在中文各NLI测试集评估达到SOTA,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,中文s2p(句子vs段落)语义匹配任务推荐使用 |
|
- `shibing624/text2vec-base-multilingual`模型,是用CoSENT方法训练,基于`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`用人工挑选后的多语言STS数据集[shibing624/nli-zh-all/text2vec-base-multilingual-dataset](https://huggingface.co/datasets/shibing624/nli-zh-all/tree/main/text2vec-base-multilingual-dataset)训练得到,并在中英文测试集评估相对于原模型效果有提升,运行[examples/training_sup_text_matching_model_jsonl_data.py](https://github.com/shibing624/text2vec/blob/master/examples/training_sup_text_matching_model_jsonl_data.py)代码可训练模型,模型文件已经上传HF model hub,多语言语义匹配任务推荐使用 |
|
- `w2v-light-tencent-chinese`是腾讯词向量的Word2Vec模型,CPU加载使用,适用于中文字面匹配任务和缺少数据的冷启动情况 |
|
- QPS的GPU测试环境是Tesla V100,显存32GB |
|
|
|
模型训练实验报告:[实验报告](https://github.com/shibing624/text2vec/blob/master/docs/model_report.md) |
|
|
|
## Usage (text2vec) |
|
Using this model becomes easy when you have [text2vec](https://github.com/shibing624/text2vec) installed: |
|
|
|
``` |
|
pip install -U text2vec |
|
``` |
|
|
|
Then you can use the model like this: |
|
|
|
```python |
|
from text2vec import SentenceModel |
|
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card'] |
|
|
|
model = SentenceModel('shibing624/text2vec-base-multilingual') |
|
embeddings = model.encode(sentences) |
|
print(embeddings) |
|
``` |
|
|
|
## Usage (HuggingFace Transformers) |
|
Without [text2vec](https://github.com/shibing624/text2vec), you can use the model like this: |
|
|
|
First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings. |
|
|
|
Install transformers: |
|
``` |
|
pip install transformers |
|
``` |
|
|
|
Then load model and predict: |
|
```python |
|
from transformers import AutoTokenizer, AutoModel |
|
import torch |
|
|
|
# Mean Pooling - Take attention mask into account for correct averaging |
|
def mean_pooling(model_output, attention_mask): |
|
token_embeddings = model_output[0] # First element of model_output contains all token embeddings |
|
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() |
|
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9) |
|
|
|
# Load model from HuggingFace Hub |
|
tokenizer = AutoTokenizer.from_pretrained('shibing624/text2vec-base-multilingual') |
|
model = AutoModel.from_pretrained('shibing624/text2vec-base-multilingual') |
|
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card'] |
|
# Tokenize sentences |
|
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt') |
|
|
|
# Compute token embeddings |
|
with torch.no_grad(): |
|
model_output = model(**encoded_input) |
|
# Perform pooling. In this case, mean pooling. |
|
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask']) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
## Usage (sentence-transformers) |
|
[sentence-transformers](https://github.com/UKPLab/sentence-transformers) is a popular library to compute dense vector representations for sentences. |
|
|
|
Install sentence-transformers: |
|
``` |
|
pip install -U sentence-transformers |
|
``` |
|
|
|
Then load model and predict: |
|
|
|
```python |
|
from sentence_transformers import SentenceTransformer |
|
|
|
m = SentenceTransformer("shibing624/text2vec-base-multilingual") |
|
sentences = ['如何更换花呗绑定银行卡', 'How to replace the Huabei bundled bank card'] |
|
|
|
sentence_embeddings = m.encode(sentences) |
|
print("Sentence embeddings:") |
|
print(sentence_embeddings) |
|
``` |
|
|
|
|
|
## Full Model Architecture |
|
``` |
|
CoSENT( |
|
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel |
|
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_mean_tokens': True}) |
|
) |
|
``` |
|
|
|
|
|
## Intended uses |
|
|
|
Our model is intented to be used as a sentence and short paragraph encoder. Given an input text, it ouptuts a vector which captures |
|
the semantic information. The sentence vector may be used for information retrieval, clustering or sentence similarity tasks. |
|
|
|
By default, input text longer than 256 word pieces is truncated. |
|
|
|
|
|
## Training procedure |
|
|
|
### Pre-training |
|
|
|
We use the pretrained [`sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2`](https://huggingface.co/sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2) model. |
|
Please refer to the model card for more detailed information about the pre-training procedure. |
|
|
|
### Fine-tuning |
|
|
|
We fine-tune the model using a contrastive objective. Formally, we compute the cosine similarity from each |
|
possible sentence pairs from the batch. |
|
We then apply the rank loss by comparing with true pairs and false pairs. |
|
|
|
|
|
## Citing & Authors |
|
This model was trained by [text2vec](https://github.com/shibing624/text2vec). |
|
|
|
If you find this model helpful, feel free to cite: |
|
```bibtex |
|
@software{text2vec, |
|
author = {Ming Xu}, |
|
title = {text2vec: A Tool for Text to Vector}, |
|
year = {2023}, |
|
url = {https://github.com/shibing624/text2vec}, |
|
} |
|
``` |