Edit model card

This model has been pushed to the Hub using the PytorchModelHubMixin integration:

Densenet121-Dog-Emotions Model Card

  • 学習データでの正答率: 0.6451
  • テストデータでの正答率: 0.5938

モデルについて

このモデルは犬の画像を[angry, happy, relaxed, sad]の4つのカテゴリに分類するモデルです。
densenet121の末端に線形層を追加し、devzohaib/dog-emotions-predictionデータセットで微調整を行ないました。参考文献と使い方は以下のようになっています。

使い方

  1. モデルの読み込み
from huggingface_hub import PyTorchModelHubMixin
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import requests

class CustomDenseNet(nn.Module, PyTorchModelHubMixin):
  def __init__(self, class_names):
    super().__init__()
    self.densenet = models.densenet121(pretrained=True)
    num_features = self.densenet.classifier.in_features
    self.densenet.fc = nn.Linear(num_features, len(class_names))

  def forward(self, x):
    outputs = self.densenet(x)
    _, preds = torch.max(outputs, 1)
    probabilities = torch.nn.functional.softmax(outputs, dim=1).squeeze(0)

    predicted_class = class_names[preds.item()]
    predicted_probabilities = {class_names[i]: probabilities[i].item() for i in range(len(class_names))}

    return predicted_class, predicted_probabilities

model_id = "shinyice/densenet121-dog-emotions"
class_names = ['angry', 'happy', 'relaxed', 'sad']
model = CustomDenseNet(class_names)
model = model.from_pretrained(model_id)

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
  1. 画像分類
def dog_emotion(model, url_mode=False, input_image=None):
  img_transforms = transforms.Compose([
      transforms.Resize(224),
      transforms.ToTensor(),
      transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
  if url_mode:
    image = Image.open(requests.get(input_image, stream=True).raw).convert('RGB')
  else:
    image = Image.open(input_image).convert('RGB')
  image_tensor = img_transforms(image).unsqueeze(0)
  image_tensor = image_tensor.to(device)

  model.eval()
  with torch.no_grad():
    predicted_class, predicted_probabilities = model(image_tensor)

  return predicted_class, predicted_probabilities, image

url_mode = True
input_image = ""

emotion,probabilities, image = dog_emotion(model=model, url_mode=url_mode, input_image=input_image)
print(emotion,probabilities)
image

参考文献

Downloads last month
51
Safetensors
Model size
8.07M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Space using shinyice/densenet121-dog-emotions 1