This model has been pushed to the Hub using the PytorchModelHubMixin integration:
Densenet121-Dog-Emotions Model Card
- 学習データでの正答率: 0.6451
- テストデータでの正答率: 0.5938
モデルについて
このモデルは犬の画像を[angry, happy, relaxed, sad]の4つのカテゴリに分類するモデルです。
densenet121の末端に線形層を追加し、devzohaib/dog-emotions-predictionデータセットで微調整を行ないました。参考文献と使い方は以下のようになっています。
使い方
- モデルの読み込み
from huggingface_hub import PyTorchModelHubMixin
import torch
import torch.nn as nn
from torchvision import models, transforms
from PIL import Image
import requests
class CustomDenseNet(nn.Module, PyTorchModelHubMixin):
def __init__(self, class_names):
super().__init__()
self.densenet = models.densenet121(pretrained=True)
num_features = self.densenet.classifier.in_features
self.densenet.fc = nn.Linear(num_features, len(class_names))
def forward(self, x):
outputs = self.densenet(x)
_, preds = torch.max(outputs, 1)
probabilities = torch.nn.functional.softmax(outputs, dim=1).squeeze(0)
predicted_class = class_names[preds.item()]
predicted_probabilities = {class_names[i]: probabilities[i].item() for i in range(len(class_names))}
return predicted_class, predicted_probabilities
model_id = "shinyice/densenet121-dog-emotions"
class_names = ['angry', 'happy', 'relaxed', 'sad']
model = CustomDenseNet(class_names)
model = model.from_pretrained(model_id)
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
- 画像分類
def dog_emotion(model, url_mode=False, input_image=None):
img_transforms = transforms.Compose([
transforms.Resize(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])])
if url_mode:
image = Image.open(requests.get(input_image, stream=True).raw).convert('RGB')
else:
image = Image.open(input_image).convert('RGB')
image_tensor = img_transforms(image).unsqueeze(0)
image_tensor = image_tensor.to(device)
model.eval()
with torch.no_grad():
predicted_class, predicted_probabilities = model(image_tensor)
return predicted_class, predicted_probabilities, image
url_mode = True
input_image = ""
emotion,probabilities, image = dog_emotion(model=model, url_mode=url_mode, input_image=input_image)
print(emotion,probabilities)
image
参考文献
- Downloads last month
- 51
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.