Model Card for Model ID

Model Details

Model Description

This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.

  • Developed by: [More Information Needed]
  • Funded by [optional]: [More Information Needed]
  • Shared by [optional]: [More Information Needed]
  • Model type: [More Information Needed]
  • Language(s) (NLP): [More Information Needed]
  • License: [More Information Needed]
  • Finetuned from model [optional]: [More Information Needed]

Model Sources [optional]

  • Repository: [More Information Needed]
  • Paper [optional]: [More Information Needed]
  • Demo [optional]: [More Information Needed]

Uses

Direct Use

[More Information Needed]

Downstream Use [optional]

[More Information Needed]

Out-of-Scope Use

[More Information Needed]

Bias, Risks, and Limitations

[More Information Needed]

Recommendations

Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.

How to Get Started with the Model

Use the code below to get started with the model.

[More Information Needed]

Training Details

Training Data

[More Information Needed]

Training Procedure

Preprocessing [optional]

[More Information Needed]

Training Hyperparameters

  • Training regime: [More Information Needed]

Speeds, Sizes, Times [optional]

[More Information Needed]

Evaluation

Testing Data, Factors & Metrics

Testing Data

[More Information Needed]

Factors

[More Information Needed]

Metrics

[More Information Needed]

Results

[More Information Needed]

Summary

Model Examination [optional]

[More Information Needed]

Environmental Impact

Carbon emissions can be estimated using the Machine Learning Impact calculator presented in Lacoste et al. (2019).

  • Hardware Type: [More Information Needed]
  • Hours used: [More Information Needed]
  • Cloud Provider: [More Information Needed]
  • Compute Region: [More Information Needed]
  • Carbon Emitted: [More Information Needed]

Technical Specifications [optional]

Model Architecture and Objective

[More Information Needed]

Compute Infrastructure

[More Information Needed]

Hardware

[More Information Needed]

Software

[More Information Needed]

Citation [optional]

BibTeX:

[More Information Needed]

APA:

[More Information Needed]

Glossary [optional]

[More Information Needed]

More Information [optional]

[More Information Needed]

Model Card Authors [optional]

[More Information Needed]

Model Card Contact

[More Information Needed]

推論用コード

!pip install -U bitsandbytes !pip install -U transformers !pip install -U accelerate !pip install -U datasets !pip install -U peft

notebookでインタラクティブな表示を可能とする(ただし、うまく動かない場合あり)

!pip install ipywidgets --upgrade

from transformers import ( AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig, ) from peft import PeftModel import torch from tqdm import tqdm import json

Hugging Faceで取得したTokenをこちらに貼る。

HF_TOKEN = "****"

ベースとなるモデルと学習したLoRAのアダプタ。

model_id = "llm-jp/llm-jp-3-13b"

omnicampus以外の環境をご利用の方は以下をご利用ください。

adapter_id = "shoji/llm-jp-3-13b-finetune20-oza2" # こちらにアップロードしたHugging FaceのIDを指定してください。 jsonl_id = "保存するファイル名"

QLoRA config

bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, )

Load model

model = AutoModelForCausalLM.from_pretrained( model_id, quantization_config=bnb_config, device_map="auto", token = HF_TOKEN )

Load tokenizer

tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True, token = HF_TOKEN)

元のモデルにLoRAのアダプタを統合。

model = PeftModel.from_pretrained(model, adapter_id, token = HF_TOKEN)

データセットの読み込み。

omnicampusの開発環境では、左にタスクのjsonlをドラッグアンドドロップしてから実行。

datasets = [] with open("elyza-tasks-100-TV_0.jsonl", "r") as f: item = "" for line in f: line = line.strip() item += line if item.endswith("}"): datasets.append(json.loads(item)) item = ""

llmjp

results = [] for data in tqdm(datasets):

input = data["input"]

prompt = f"""### 指示 {input}

回答

"""

tokenized_input = tokenizer.encode(prompt, add_special_tokens=False, return_tensors="pt").to(model.device) attention_mask = torch.ones_like(tokenized_input) with torch.no_grad(): outputs = model.generate( tokenized_input, attention_mask=attention_mask, max_new_tokens=1024, do_sample=False, repetition_penalty=1.2, pad_token_id=tokenizer.eos_token_id )[0] output = tokenizer.decode(outputs[tokenized_input.size(1):], skip_special_tokens=True)

results.append({"task_id": data["task_id"], "input": input, "output": output})

こちらで生成されたjsolを提出してください。

本コードではinputとeval_aspectも含んでいますが、なくても問題ありません。

必須なのはtask_idとoutputとなります。

import re jsonl_id = re.sub(".*/", "", adapter_id) with open(f"{jsonl_id}-outputs_llmjp.jsonl", 'w', encoding='utf-8') as f: for result in results: json.dump(result, f, ensure_ascii=False) # ensure_ascii=False for handling non-ASCII characters f.write('\n')

Downloads last month

-

Downloads are not tracked for this model. How to track
Inference API
Unable to determine this model’s pipeline type. Check the docs .