xls-r-et-cv_8_0 / README.md
anton-l's picture
anton-l HF staff
Upload README.md
3835837
metadata
language:
  - et
license: apache-2.0
tags:
  - automatic-speech-recognition
  - mozilla-foundation/common_voice_8_0
  - generated_from_trainer
  - robust-speech-event
  - et
  - hf-asr-leaderboard
datasets:
  - mozilla-foundation/common_voice_8_0
model-index:
  - name: xls-r-et-cv_8_0
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 7
          type: mozilla-foundation/common_voice_7_0
          args: et
        metrics:
          - name: Test WER
            type: wer
            value: 0.34180826781638346
          - name: Test CER
            type: cer
            value: 0.07356192733576256
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 8.0
          type: mozilla-foundation/common_voice_8_0
          args: et
        metrics:
          - name: Test WER
            type: wer
            value: 34.18
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Dev Data
          type: speech-recognition-community-v2/dev_data
          args: et
        metrics:
          - name: Test WER
            type: wer
            value: 45.53
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Robust Speech Event - Test Data
          type: speech-recognition-community-v2/eval_data
          args: et
        metrics:
          - name: Test WER
            type: wer
            value: 54.41

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the MOZILLA-FOUNDATION/COMMON_VOICE_8_0 - ET dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4623
  • Wer: 0.3420

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 72
  • eval_batch_size: 72
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 144
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 100.0
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3082 12.5 500 0.3871 0.4907
0.1497 25.0 1000 0.4168 0.4278
0.1243 37.5 1500 0.4446 0.4220
0.0954 50.0 2000 0.4426 0.3946
0.0741 62.5 2500 0.4502 0.3800
0.0533 75.0 3000 0.4618 0.3653
0.0447 87.5 3500 0.4518 0.3461
0.0396 100.0 4000 0.4623 0.3420

Framework versions

  • Transformers 4.16.0.dev0
  • Pytorch 1.10.1+cu102
  • Datasets 1.18.4.dev0
  • Tokenizers 0.11.0