phi3nedtuned-ner-json
This model is a fine-tuned version of microsoft/Phi-3-mini-4k-instruct on the dataset: https://huggingface.co/datasets/shujatoor/ner_instruct-json.
For Inference
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline
config = PeftConfig.from_pretrained("shujatoor/phi3nedtuned-ner-json")
model = AutoModelForCausalLM.from_pretrained(
"microsoft/Phi-3-mini-4k-instruct",
device_map="cuda",
torch_dtype="auto",
trust_remote_code=True,
)
model = PeftModel.from_pretrained(model, "shujatoor/phi3nedtuned-ner-json")
model.config.to_json_file('adapter_config.json')
torch.random.manual_seed(0)
tokenizer = AutoTokenizer.from_pretrained("shujatoor/phi3nedtuned-ner-json")
text = "Tehzeeb Bakers STRN3277876134234 Block A. Police Foundation,PwD Islamabad 051-5170713-4.051-5170501 STRN#3277876134234 NTN#7261076-2 Sales Receipt 05/04/202405:56:40PM CashierM J Payment:Cash Rate Qty. Total # Descriptlon 80.512.000 190.00 1.VEGETABLESAMOSA Sub Total 161.02 Total Tax: 28.98 POS Service Fee 1.00 Total 191.00 Cash 200.00 Change Due 9.00 SR#th007-220240405175640730 Goods Once Sold Can Not Be Taken Back or Replaced All Prices Are Inclusive Sales Tax 134084240405175640553"
q_json = "extracted_data': {'store_name': '', 'address': '', 'receipt_number': '', 'drug_license_number': '', 'gst_number': '', 'vat_number': '', 'date': '', 'time': '', 'items': [], 'total_items': '', 'gst_tax': '', 'vat_tax': '', 'gross_total': '', 'discount': '', 'net_total': '', 'contact': ''}"
qs = f'{text}. {q_json}'
print('Question:',qs, '\n')
messages = [
#{"role": "system", "content": ""},
{"role": "user", "content": qs},
]
pipe = pipeline(
"text-generation",
model=model,
tokenizer=tokenizer,
)
generation_args = {
"max_new_tokens": 512,
"return_full_text": False,
#"temperature": 0.0,
"do_sample": False,
}
output = pipe(messages, **generation_args)
print('Answer:', output[0]['generated_text'], '\n')
Model description
More information needed
Intended uses & limitations
Named Entity Recognition (NER)
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 0
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.2
- num_epochs: 5
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
1.1904 | 0.5618 | 500 | 1.0617 |
0.765 | 1.1236 | 1000 | 0.9442 |
0.782 | 1.6854 | 1500 | 0.8690 |
0.5591 | 2.2472 | 2000 | 0.8647 |
0.5669 | 2.8090 | 2500 | 0.8296 |
0.4205 | 3.3708 | 3000 | 0.8820 |
0.3812 | 3.9326 | 3500 | 0.8859 |
0.3323 | 4.4944 | 4000 | 0.9360 |
Framework versions
- PEFT 0.10.1.dev0
- Transformers 4.41.0.dev0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 2
Model tree for shujatoor/phi3nedtuned-ner-json
Base model
microsoft/Phi-3-mini-4k-instruct