|
--- |
|
license: llama3 |
|
library_name: peft |
|
tags: |
|
- trl |
|
- sft |
|
- generated_from_trainer |
|
base_model: meta-llama/Meta-Llama-3-8B |
|
model-index: |
|
- name: saleperson_model |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# saleperson_model |
|
|
|
This model is a fine-tuned version of [meta-llama/Meta-Llama-3-8B](https://huggingface.co/meta-llama/Meta-Llama-3-8B) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.3904 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 0.0002 |
|
- train_batch_size: 8 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 2 |
|
- total_train_batch_size: 16 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- num_epochs: 10 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 1.2687 | 0.09 | 10 | 1.0271 | |
|
| 0.9208 | 0.18 | 20 | 0.8322 | |
|
| 0.8525 | 0.27 | 30 | 0.7405 | |
|
| 0.7371 | 0.36 | 40 | 0.6628 | |
|
| 0.6385 | 0.44 | 50 | 0.6114 | |
|
| 0.6129 | 0.53 | 60 | 0.5753 | |
|
| 0.5744 | 0.62 | 70 | 0.5400 | |
|
| 0.4751 | 0.71 | 80 | 0.5181 | |
|
| 0.5396 | 0.8 | 90 | 0.5072 | |
|
| 0.5591 | 0.89 | 100 | 0.4962 | |
|
| 0.4722 | 0.98 | 110 | 0.4833 | |
|
| 0.4386 | 1.07 | 120 | 0.4737 | |
|
| 0.4628 | 1.16 | 130 | 0.4661 | |
|
| 0.4762 | 1.24 | 140 | 0.4513 | |
|
| 0.4393 | 1.33 | 150 | 0.4476 | |
|
| 0.4075 | 1.42 | 160 | 0.4332 | |
|
| 0.3876 | 1.51 | 170 | 0.4282 | |
|
| 0.3927 | 1.6 | 180 | 0.4192 | |
|
| 0.3692 | 1.69 | 190 | 0.4116 | |
|
| 0.4409 | 1.78 | 200 | 0.4085 | |
|
| 0.3214 | 1.87 | 210 | 0.3998 | |
|
| 0.3653 | 1.96 | 220 | 0.4001 | |
|
| 0.3436 | 2.04 | 230 | 0.4005 | |
|
| 0.2995 | 2.13 | 240 | 0.3951 | |
|
| 0.3033 | 2.22 | 250 | 0.3896 | |
|
| 0.3767 | 2.31 | 260 | 0.3912 | |
|
| 0.3236 | 2.4 | 270 | 0.3801 | |
|
| 0.3008 | 2.49 | 280 | 0.3905 | |
|
| 0.318 | 2.58 | 290 | 0.3710 | |
|
| 0.3258 | 2.67 | 300 | 0.3707 | |
|
| 0.2655 | 2.76 | 310 | 0.3742 | |
|
| 0.3208 | 2.84 | 320 | 0.3719 | |
|
| 0.3418 | 2.93 | 330 | 0.3667 | |
|
| 0.2883 | 3.02 | 340 | 0.3729 | |
|
| 0.2016 | 3.11 | 350 | 0.3692 | |
|
| 0.2981 | 3.2 | 360 | 0.3704 | |
|
| 0.2608 | 3.29 | 370 | 0.3762 | |
|
| 0.29 | 3.38 | 380 | 0.3602 | |
|
| 0.2496 | 3.47 | 390 | 0.3580 | |
|
| 0.2669 | 3.56 | 400 | 0.3535 | |
|
| 0.2206 | 3.64 | 410 | 0.3636 | |
|
| 0.2624 | 3.73 | 420 | 0.3572 | |
|
| 0.3052 | 3.82 | 430 | 0.3574 | |
|
| 0.2789 | 3.91 | 440 | 0.3452 | |
|
| 0.2465 | 4.0 | 450 | 0.3465 | |
|
| 0.1996 | 4.09 | 460 | 0.3676 | |
|
| 0.203 | 4.18 | 470 | 0.3540 | |
|
| 0.2044 | 4.27 | 480 | 0.3692 | |
|
| 0.2044 | 4.36 | 490 | 0.3497 | |
|
| 0.2528 | 4.44 | 500 | 0.3585 | |
|
| 0.2498 | 4.53 | 510 | 0.3505 | |
|
| 0.1957 | 4.62 | 520 | 0.3549 | |
|
| 0.2098 | 4.71 | 530 | 0.3495 | |
|
| 0.2295 | 4.8 | 540 | 0.3478 | |
|
| 0.2063 | 4.89 | 550 | 0.3409 | |
|
| 0.2024 | 4.98 | 560 | 0.3478 | |
|
| 0.185 | 5.07 | 570 | 0.3553 | |
|
| 0.1571 | 5.16 | 580 | 0.3665 | |
|
| 0.1969 | 5.24 | 590 | 0.3572 | |
|
| 0.1719 | 5.33 | 600 | 0.3595 | |
|
| 0.1874 | 5.42 | 610 | 0.3529 | |
|
| 0.1953 | 5.51 | 620 | 0.3598 | |
|
| 0.1545 | 5.6 | 630 | 0.3501 | |
|
| 0.1947 | 5.69 | 640 | 0.3602 | |
|
| 0.1804 | 5.78 | 650 | 0.3433 | |
|
| 0.1498 | 5.87 | 660 | 0.3564 | |
|
| 0.1722 | 5.96 | 670 | 0.3563 | |
|
| 0.1607 | 6.04 | 680 | 0.3622 | |
|
| 0.1728 | 6.13 | 690 | 0.3636 | |
|
| 0.1464 | 6.22 | 700 | 0.3643 | |
|
| 0.1514 | 6.31 | 710 | 0.3618 | |
|
| 0.1522 | 6.4 | 720 | 0.3730 | |
|
| 0.1378 | 6.49 | 730 | 0.3666 | |
|
| 0.1363 | 6.58 | 740 | 0.3584 | |
|
| 0.1312 | 6.67 | 750 | 0.3733 | |
|
| 0.1304 | 6.76 | 760 | 0.3542 | |
|
| 0.1399 | 6.84 | 770 | 0.3548 | |
|
| 0.137 | 6.93 | 780 | 0.3645 | |
|
| 0.139 | 7.02 | 790 | 0.3605 | |
|
| 0.1167 | 7.11 | 800 | 0.3717 | |
|
| 0.1205 | 7.2 | 810 | 0.3784 | |
|
| 0.1107 | 7.29 | 820 | 0.3828 | |
|
| 0.1258 | 7.38 | 830 | 0.3711 | |
|
| 0.1186 | 7.47 | 840 | 0.3769 | |
|
| 0.1094 | 7.56 | 850 | 0.3805 | |
|
| 0.1405 | 7.64 | 860 | 0.3649 | |
|
| 0.1331 | 7.73 | 870 | 0.3750 | |
|
| 0.1199 | 7.82 | 880 | 0.3718 | |
|
| 0.119 | 7.91 | 890 | 0.3669 | |
|
| 0.1208 | 8.0 | 900 | 0.3707 | |
|
| 0.1088 | 8.09 | 910 | 0.3801 | |
|
| 0.1142 | 8.18 | 920 | 0.3848 | |
|
| 0.1211 | 8.27 | 930 | 0.3772 | |
|
| 0.1102 | 8.36 | 940 | 0.3781 | |
|
| 0.11 | 8.44 | 950 | 0.3822 | |
|
| 0.106 | 8.53 | 960 | 0.3846 | |
|
| 0.0999 | 8.62 | 970 | 0.3869 | |
|
| 0.0994 | 8.71 | 980 | 0.3859 | |
|
| 0.0949 | 8.8 | 990 | 0.3843 | |
|
| 0.1103 | 8.89 | 1000 | 0.3847 | |
|
| 0.1032 | 8.98 | 1010 | 0.3850 | |
|
| 0.1035 | 9.07 | 1020 | 0.3840 | |
|
| 0.0941 | 9.16 | 1030 | 0.3878 | |
|
| 0.1065 | 9.24 | 1040 | 0.3893 | |
|
| 0.1011 | 9.33 | 1050 | 0.3909 | |
|
| 0.1114 | 9.42 | 1060 | 0.3914 | |
|
| 0.0961 | 9.51 | 1070 | 0.3908 | |
|
| 0.0946 | 9.6 | 1080 | 0.3905 | |
|
| 0.1044 | 9.69 | 1090 | 0.3904 | |
|
| 0.1032 | 9.78 | 1100 | 0.3904 | |
|
| 0.1009 | 9.87 | 1110 | 0.3904 | |
|
| 0.0831 | 9.96 | 1120 | 0.3904 | |
|
|
|
|
|
### Framework versions |
|
|
|
- PEFT 0.7.1 |
|
- Transformers 4.38.2 |
|
- Pytorch 2.0.1+cu117 |
|
- Datasets 2.14.4 |
|
- Tokenizers 0.15.2 |