sianbru's picture
Model save
959ecca
|
raw
history blame
1.88 kB
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
  - precision
  - recall
model-index:
  - name: product_classifier_split_url_nodigit_lv
    results: []

product_classifier_split_url_nodigit_lv

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1212
  • Accuracy: 0.9747
  • F1: 0.9745
  • Precision: 0.9745
  • Recall: 0.9747

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 4

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Precision Recall
0.1798 1.0 1085 0.1438 0.9556 0.9556 0.9558 0.9556
0.1004 2.0 2170 0.1257 0.9688 0.9687 0.9687 0.9688
0.0673 3.0 3255 0.1175 0.9742 0.9741 0.9741 0.9742
0.037 4.0 4340 0.1212 0.9747 0.9745 0.9745 0.9747

Framework versions

  • Transformers 4.32.0
  • Pytorch 2.0.1+cu117
  • Datasets 2.14.4
  • Tokenizers 0.13.3