Librarian Bot: Add base_model information to model

#2
Files changed (1) hide show
  1. README.md +17 -12
README.md CHANGED
@@ -3,20 +3,25 @@ tags:
3
  - generated_from_trainer
4
  datasets:
5
  - jnlpba
6
- widget:
7
- - text: "The widespread circular form of DNA molecules inside cells creates very serious topological problems during replication. Due to the helical structure of the double helix the parental strands of circular DNA form a link of very high order, and yet they have to be unlinked before the cell division."
8
- - text: "It consists of 25 exons encoding a 1,278-amino acid glycoprotein that is composed of 13 transmembrane domains"
9
  metrics:
10
  - precision
11
  - recall
12
  - f1
13
  - accuracy
 
 
 
 
 
 
 
 
14
  model-index:
15
  - name: biobert-finetuned-ner
16
  results:
17
  - task:
18
- name: Token Classification
19
  type: token-classification
 
20
  dataset:
21
  name: jnlpba
22
  type: jnlpba
@@ -24,18 +29,18 @@ model-index:
24
  split: train
25
  args: jnlpba
26
  metrics:
27
- - name: Precision
28
- type: precision
29
  value: 0.6550939663699308
30
- - name: Recall
31
- type: recall
32
  value: 0.7646040175479104
33
- - name: F1
34
- type: f1
35
  value: 0.7056253995312167
36
- - name: Accuracy
37
- type: accuracy
38
  value: 0.9107839603371846
 
39
  ---
40
 
41
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
3
  - generated_from_trainer
4
  datasets:
5
  - jnlpba
 
 
 
6
  metrics:
7
  - precision
8
  - recall
9
  - f1
10
  - accuracy
11
+ widget:
12
+ - text: The widespread circular form of DNA molecules inside cells creates very serious
13
+ topological problems during replication. Due to the helical structure of the double
14
+ helix the parental strands of circular DNA form a link of very high order, and
15
+ yet they have to be unlinked before the cell division.
16
+ - text: It consists of 25 exons encoding a 1,278-amino acid glycoprotein that is composed
17
+ of 13 transmembrane domains
18
+ base_model: dmis-lab/biobert-base-cased-v1.2
19
  model-index:
20
  - name: biobert-finetuned-ner
21
  results:
22
  - task:
 
23
  type: token-classification
24
+ name: Token Classification
25
  dataset:
26
  name: jnlpba
27
  type: jnlpba
 
29
  split: train
30
  args: jnlpba
31
  metrics:
32
+ - type: precision
 
33
  value: 0.6550939663699308
34
+ name: Precision
35
+ - type: recall
36
  value: 0.7646040175479104
37
+ name: Recall
38
+ - type: f1
39
  value: 0.7056253995312167
40
+ name: F1
41
+ - type: accuracy
42
  value: 0.9107839603371846
43
+ name: Accuracy
44
  ---
45
 
46
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You