|
--- |
|
license: creativeml-openrail-m |
|
library_name: diffusers |
|
tags: |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
- diffusers-training |
|
- stable-diffusion |
|
- stable-diffusion-diffusers |
|
- text-to-image |
|
- diffusers |
|
- controlnet |
|
- diffusers-training |
|
base_model: stabilityai/stable-diffusion-2-1-base |
|
datasets: |
|
- gvecchio/MatSynth |
|
inference: true |
|
--- |
|
|
|
# controlnet_normal |
|
|
|
Generate a normal map from a photograph or basecolor (albedo) map. |
|
|
|
# Usage |
|
|
|
``` |
|
import argparse |
|
|
|
from PIL import Image |
|
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler |
|
from diffusers.utils import load_image |
|
import torch |
|
|
|
parser = argparse.ArgumentParser(description="Args for parser") |
|
parser.add_argument("--seed", type=int, default=1, help="Seed for inference") |
|
args = parser.parse_args() |
|
|
|
base_model_path = "stabilityai/stable-diffusion-2-1-base" |
|
controlnet_path = "sidnarsipur/controlnet_normal" |
|
|
|
controlnet = ControlNetModel.from_pretrained(controlnet_path, torch_dtype=torch.float16) |
|
pipe = StableDiffusionControlNetPipeline.from_pretrained( |
|
base_model_path, controlnet=controlnet, torch_dtype=torch.float16 |
|
) |
|
|
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
pipe.enable_xformers_memory_efficient_attention() |
|
pipe.enable_model_cpu_offload() |
|
|
|
control_image = load_image("inference/basecolor.png") #Change based on your image path |
|
prompt = "Normal Map" #Don't change! |
|
|
|
if control_image.size[0] > 2048 or control_image.size[1] > 2048: #Optional |
|
control_image = control_image.resize((control_image.size[0] // 2, control_image.size[1] // 2)) |
|
|
|
generator = torch.manual_seed(args.seed) |
|
|
|
image = pipe( |
|
prompt, num_inference_steps=50, generator=generator, image=control_image |
|
).images[0] |
|
image.save("inference/normal.png") |
|
|
|
|
|
|