Model Card: sigridjineth/ko-reranker-v1.1
- The model, which is finetuned from Alibaba-NLP/gte-multilingual-reranker-base is currently under development and may undergo further changes as we refine and improve its performance. Underwent A100 x 8 with 12 hours for training.
Training Data
This model is trained on 328K Korean Triplets, which aggregates several publicly available datasets, ensuring rich linguistic diversity:
- kor_nli (train): https://huggingface.co/datasets/kor_nli
- mnli_ko (train): https://huggingface.co/datasets/kozistr/mnli_ko
- ko-wiki-reranking (train): https://huggingface.co/datasets/upskyy/ko-wiki-reranking
- mr_tydi_korean (train): https://huggingface.co/datasets/castorini/mr-tydi
- klue_nli (train): https://huggingface.co/datasets/klue/klue
These combined resources ensure coverage across a wide range of topics, styles, and complexities in Korean language data, enabling the model to capture nuanced semantic differences.
Key Features
Hard Negative Mining:
Integrated BAAI/bge-m3 to mine challenging negatives. This approach sharpens the modelโs ability to distinguish subtle contrasts, boosting robustness and improving ranking quality.Teacher-Student Distillation:
Leveraged BAAI/bge-reranker-v2.5-gemma2-lightweight as a teacher model. The student reranker learned from teacher-provided positive/negative scores, accelerating convergence and achieving better final performance.
Intended Use
- Search & Information Retrieval: Improve document ranking for Korean-language search queries.
- Question Answering (QA): Enhance QA pipelines by reordering candidate answers for improved relevance.
- Content Recommendation: Refine recommendation engines that rely on textual signals to deliver more accurate suggestions.
Limitations & Future Work
Preview Release:
The model is still in the refinement phase. Expect future updates to improve stability, generalization, and performance.Need for Evaluation:
Developing and standardizing benchmarks for generalized Korean retrieval tasks (especially for rerankers) will be an ongoing effort.
Evaluation
The AutoRAG Benchmark serves as both the evaluation dataset and the toolkit for reporting these metrics.
Model: sigridjineth/ko-reranker-v1.1-preview
top_k | Execution Time | F1 | Recall | Precision | MAP | MRR | NDCG | Is Best |
---|---|---|---|---|---|---|---|---|
1 | 0.0438 | 0.6754 | 0.6754 | 0.6754 | 0.6754 | 0.6754 | 0.6754 | True |
3 | 0.0486 | 0.3684 | 0.7368 | 0.2456 | 0.7032 | 0.7032 | 0.7119 | False |
5 | 0.0446 | 0.3684 | 0.7368 | 0.2456 | 0.7032 | 0.7032 | 0.7119 | False |
Model: Alibaba-NLP/gte-multilingual-reranker-base
top_k | Execution Time | F1 | Recall | Precision | MAP | MRR | NDCG | Is Best |
---|---|---|---|---|---|---|---|---|
1 | 0.0481 | 0.6316 | 0.6316 | 0.6316 | 0.6316 | 0.6316 | 0.6316 | True |
3 | 0.0427 | 0.3596 | 0.7193 | 0.2398 | 0.6725 | 0.6725 | 0.6846 | False |
5 | 0.0442 | 0.3596 | 0.7193 | 0.2398 | 0.6725 | 0.6725 | 0.6846 | False |
Model: dragonkue/bge-reranker-v2-m3-ko
top_k | Execution Time | F1 | Recall | Precision | MAP | MRR | NDCG | Is Best |
---|---|---|---|---|---|---|---|---|
1 | 0.0814 | 0.6930 | 0.6930 | 0.6930 | 0.6930 | 0.6930 | 0.6930 | True |
3 | 0.0813 | 0.3596 | 0.7193 | 0.2398 | 0.7061 | 0.7061 | 0.7096 | False |
5 | 0.0824 | 0.3596 | 0.7193 | 0.2398 | 0.7061 | 0.7061 | 0.7096 | False |
Evaluation Results (k=1,3,5,10):
Accuracy@1: 0.8070
F1@1: 0.8070
Recall@1: 0.8070
Precision@1: 0.8070
Accuracy@3: 0.9211
F1@3: 0.4605
Recall@3: 0.9211
Precision@3: 0.3070
Accuracy@5: 0.9474
F1@5: 0.3158
Recall@5: 0.9474
Precision@5: 0.1895
Accuracy@10: 0.9737
F1@10: 0.1770
Recall@10: 0.9737
Precision@10: 0.0974
Total inference time (all queries): 142.64 sec
Average inference time (per query): 1.2512 sec
Usage (transformers>=4.36.0)
import torch
from transformers import AutoModelForSequenceClassification, AutoTokenizer
model_name_or_path = "sigridjineth/ko-reranker-v1.1-preview"
tokenizer = AutoTokenizer.from_pretrained(model_name_or_path)
model = AutoModelForSequenceClassification.from_pretrained(
model_name_or_path,
trust_remote_code=True,
torch_dtype=torch.float16
)
model.eval()
pairs = [
["์ค๊ตญ์ ์๋๋","๋ฒ ์ด์ง"],
["2024๋
๋ํ๋ฏผ๊ตญ ๋ํต๋ น์?", "๋ํ๋ฏผ๊ตญ ๋ํต๋ น์ ์ค์์ด์ด๋ค"],
["ํ์ด์ฌ์์ ํต ์ํธ๋ฅผ ๊ตฌํํ๊ธฐ","quick sort๋ก ์ฝํ
1๋ฑ ๋จน์ด๋ณด์"]
]
with torch.no_grad():
inputs = tokenizer(pairs, padding=True, truncation=True, return_tensors='pt', max_length=512)
scores = model(**inputs, return_dict=True).logits.view(-1, ).float()
print(scores)
# Example output:
# tensor([1.2315, 0.5923, 0.3041])
Usage with Infinity
Infinity is an MIT-licensed inference REST API server that can easily host and serve models. For instance:
docker run --gpus all -v $PWD/data:/app/.cache -p "7997":"7997" \
michaelf34/infinity:0.0.68 \
v2 --model-id Alibaba-NLP/gte-multilingual-reranker-base --revision "main" \
--dtype bfloat16 --batch-size 32 --device cuda --engine torch --port 7997
References
@misc{zhang2024mgtegeneralizedlongcontexttext,
title={mGTE: Generalized Long-Context Text Representation and Reranking Models for Multilingual Text Retrieval},
author={Xin Zhang and Yanzhao Zhang and Dingkun Long and Wen Xie and Ziqi Dai and Jialong Tang and Huan Lin and Baosong Yang and Pengjun Xie and Fei Huang and Meishan Zhang and Wenjie Li and Min Zhang},
year={2024},
eprint={2407.19669},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2407.19669},
}
@misc{li2023making,
title={Making Large Language Models A Better Foundation For Dense Retrieval},
author={Chaofan Li and Zheng Liu and Shitao Xiao and Yingxia Shao},
year={2023},
eprint={2312.15503},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
@misc{chen2024bge,
title={BGE M3-Embedding: Multi-Lingual, Multi-Functionality, Multi-Granularity Text Embeddings Through Self-Knowledge Distillation},
author={Jianlv Chen and Shitao Xiao and Peitian Zhang and Kun Luo and Defu Lian and Zheng Liu},
year={2024},
eprint={2402.03216},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 174
Model tree for sigridjineth/ko-reranker-v1.1
Base model
Alibaba-NLP/gte-multilingual-reranker-base