|
--- |
|
license: apache-2.0 |
|
tags: |
|
- mdeberta-v3-base |
|
- text-classification |
|
- nli |
|
- natural-language-inference |
|
- multilingual |
|
- multitask |
|
- multi-task |
|
- pipeline |
|
- extreme-multi-task |
|
- extreme-mtl |
|
- tasksource |
|
- zero-shot |
|
- rlhf |
|
datasets: |
|
- xnli |
|
- metaeval/xnli |
|
- americas_nli |
|
- MoritzLaurer/multilingual-NLI-26lang-2mil7 |
|
- stsb_multi_mt |
|
- paws-x |
|
- miam |
|
- strombergnlp/x-stance |
|
- tyqiangz/multilingual-sentiments |
|
- metaeval/universal-joy |
|
- amazon_reviews_multi |
|
- cardiffnlp/tweet_sentiment_multilingual |
|
- strombergnlp/offenseval_2020 |
|
- offenseval_dravidian |
|
- nedjmaou/MLMA_hate_speech |
|
- xglue |
|
- ylacombe/xsum_factuality |
|
- metaeval/x-fact |
|
- pasinit/xlwic |
|
- tasksource/oasst1_dense_flat |
|
- papluca/language-identification |
|
- wili_2018 |
|
- exams |
|
- xcsr |
|
- xcopa |
|
- juletxara/xstory_cloze |
|
- Anthropic/hh-rlhf |
|
- universal_dependencies |
|
- tasksource/oasst1_pairwise_rlhf_reward |
|
- OpenAssistant/oasst1 |
|
language: |
|
- multilingual |
|
- zh |
|
- ja |
|
- ar |
|
- ko |
|
- de |
|
- fr |
|
- es |
|
- pt |
|
- hi |
|
- id |
|
- it |
|
- tr |
|
- ru |
|
- bn |
|
- ur |
|
- mr |
|
- ta |
|
- vi |
|
- fa |
|
- pl |
|
- uk |
|
- nl |
|
- sv |
|
- he |
|
- sw |
|
- ps |
|
pipeline_tag: zero-shot-classification |
|
--- |
|
|
|
# Model Card for mDeBERTa-v3-base-tasksource-nli |
|
|
|
Multilingual [mdeberta-v3-base](https://huggingface.co/microsoft/mdeberta-v3-base) with 30k steps multi-task training on [mtasksource](https://github.com/sileod/tasksource/blob/main/src/tasksource/mtasks.py) |
|
|
|
This model can be used as a stable starting-point for further fine-tuning, or directly in zero-shot NLI model or a zero-shot pipeline. |
|
|
|
In addition, you can use the provided [adapters](https://huggingface.co/sileod/mdeberta-v3-base-tasksource-adapters) to directly load a model for hundreds of tasks. |
|
```python |
|
!pip install tasknet, tasksource -q |
|
import tasknet as tn |
|
pipe=tn.load_pipeline( |
|
'sileod/mdeberta-v3-base-tasksource-nli', |
|
'miam/dihana') |
|
pipe(['si','como esta?']) |
|
``` |
|
|
|
# Software |
|
https://github.com/sileod/tasksource/ |
|
|
|
https://github.com/sileod/tasknet/ |
|
|
|
# Contact and citation |
|
For help integrating tasksource into your experiments, please contact [damien.sileo@inria.fr](mailto:damien.sileo@inria.fr). |
|
|
|
For more details, refer to this [article:](https://arxiv.org/abs/2301.05948) |
|
```bib |
|
@article{sileo2023tasksource, |
|
title={tasksource: Structured Dataset Preprocessing Annotations for Frictionless Extreme Multi-Task Learning and Evaluation}, |
|
author={Sileo, Damien}, |
|
url= {https://arxiv.org/abs/2301.05948}, |
|
journal={arXiv preprint arXiv:2301.05948}, |
|
year={2023} |
|
} |
|
``` |