silmi224's picture
Training complete
1698d18 verified
metadata
base_model: silmi224/finetune-led-35000
tags:
  - summarization
  - generated_from_trainer
metrics:
  - rouge
model-index:
  - name: exp2-led-risalah_data_v1
    results: []

exp2-led-risalah_data_v1

This model is a fine-tuned version of silmi224/finetune-led-35000 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5716
  • Rouge1: 19.6052
  • Rouge2: 10.044
  • Rougel: 14.481
  • Rougelsum: 18.8794

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 8
  • total_train_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 150
  • num_epochs: 30
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Rouge1 Rouge2 Rougel Rougelsum
3.3238 1.0 10 2.7939 8.2919 2.3936 6.4452 7.8858
3.0941 2.0 20 2.5393 8.884 2.3029 6.6763 8.2192
2.7749 3.0 30 2.2953 11.5346 3.61 7.9843 10.5072
2.5095 4.0 40 2.1271 13.3139 4.2267 9.3106 11.9731
2.3044 5.0 50 2.0140 14.8318 5.4652 10.4052 13.8404
2.1532 6.0 60 1.9280 15.6855 6.4587 10.7669 14.5093
2.032 7.0 70 1.8598 14.9367 5.7627 10.481 14.0571
1.9376 8.0 80 1.8049 14.8866 6.1106 10.0165 14.4686
1.8459 9.0 90 1.7491 13.6909 5.6398 9.2128 12.9399
1.7765 10.0 100 1.7213 16.7363 7.2146 11.2988 16.0402
1.704 11.0 110 1.6857 18.4687 8.7089 12.9138 17.8621
1.6542 12.0 120 1.6610 19.2238 8.9265 13.1614 17.6696
1.5957 13.0 130 1.6335 19.6057 9.8766 13.6908 18.6659
1.5413 14.0 140 1.6145 19.2875 9.7272 14.3241 17.7305
1.496 15.0 150 1.6232 18.1669 8.857 13.5735 17.1252
1.4535 16.0 160 1.6036 19.3501 10.1008 14.5871 18.4397
1.4204 17.0 170 1.5954 19.4201 10.3577 14.2019 18.4312
1.3829 18.0 180 1.5794 18.4944 9.4098 13.9 17.3891
1.3535 19.0 190 1.5814 19.9886 11.1416 15.0161 19.122
1.3328 20.0 200 1.5758 20.2011 10.5645 14.7218 19.1219
1.3063 21.0 210 1.5722 20.7308 10.834 15.3016 19.8805
1.2858 22.0 220 1.5745 19.648 10.77 14.0294 19.0395
1.2726 23.0 230 1.5651 20.4129 10.8196 15.0054 19.7253
1.2557 24.0 240 1.5709 18.6308 9.3525 13.8142 18.1621
1.2456 25.0 250 1.5659 19.6106 10.4499 14.4439 18.9271
1.233 26.0 260 1.5702 19.1583 9.7391 14.1738 18.5077
1.2267 27.0 270 1.5651 18.7654 9.8637 13.7809 18.2034
1.2203 28.0 280 1.5703 19.9698 10.4741 14.3559 19.389
1.2147 29.0 290 1.5739 19.9054 10.0052 14.6427 19.2278
1.2124 30.0 300 1.5716 19.6052 10.044 14.481 18.8794

Framework versions

  • Transformers 4.41.2
  • Pytorch 2.1.2
  • Datasets 2.19.2
  • Tokenizers 0.19.1