metadata
license: mit
base_model: roberta-large
tags:
- generated_from_trainer
metrics:
- accuracy
model-index:
- name: roberta-large-sst-2-64-13-smoothed
results: []
roberta-large-sst-2-64-13-smoothed
This model is a fine-tuned version of roberta-large on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5741
- Accuracy: 0.9375
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 50
- num_epochs: 75
- label_smoothing_factor: 0.45
Training results
Training Loss | Epoch | Step | Validation Loss | Accuracy |
---|---|---|---|---|
No log | 1.0 | 4 | 0.6932 | 0.5 |
No log | 2.0 | 8 | 0.6930 | 0.5 |
0.6986 | 3.0 | 12 | 0.6928 | 0.5078 |
0.6986 | 4.0 | 16 | 0.6926 | 0.5078 |
0.7049 | 5.0 | 20 | 0.6926 | 0.5 |
0.7049 | 6.0 | 24 | 0.6924 | 0.5 |
0.7049 | 7.0 | 28 | 0.6922 | 0.5 |
0.6928 | 8.0 | 32 | 0.6918 | 0.5234 |
0.6928 | 9.0 | 36 | 0.6912 | 0.5312 |
0.6889 | 10.0 | 40 | 0.6905 | 0.5625 |
0.6889 | 11.0 | 44 | 0.6895 | 0.5078 |
0.6889 | 12.0 | 48 | 0.6880 | 0.5781 |
0.6855 | 13.0 | 52 | 0.6823 | 0.6875 |
0.6855 | 14.0 | 56 | 0.6590 | 0.8281 |
0.6346 | 15.0 | 60 | 0.6187 | 0.8672 |
0.6346 | 16.0 | 64 | 0.6192 | 0.8281 |
0.6346 | 17.0 | 68 | 0.5983 | 0.9062 |
0.5877 | 18.0 | 72 | 0.6030 | 0.875 |
0.5877 | 19.0 | 76 | 0.5942 | 0.9141 |
0.564 | 20.0 | 80 | 0.5918 | 0.8984 |
0.564 | 21.0 | 84 | 0.5860 | 0.9141 |
0.564 | 22.0 | 88 | 0.5761 | 0.9375 |
0.5505 | 23.0 | 92 | 0.5854 | 0.9297 |
0.5505 | 24.0 | 96 | 0.5750 | 0.9141 |
0.5462 | 25.0 | 100 | 0.5776 | 0.9141 |
0.5462 | 26.0 | 104 | 0.5713 | 0.9453 |
0.5462 | 27.0 | 108 | 0.5731 | 0.9375 |
0.5414 | 28.0 | 112 | 0.5770 | 0.9297 |
0.5414 | 29.0 | 116 | 0.5789 | 0.9141 |
0.5382 | 30.0 | 120 | 0.5871 | 0.9062 |
0.5382 | 31.0 | 124 | 0.5810 | 0.9141 |
0.5382 | 32.0 | 128 | 0.5765 | 0.9297 |
0.5383 | 33.0 | 132 | 0.5769 | 0.9297 |
0.5383 | 34.0 | 136 | 0.5718 | 0.9453 |
0.5385 | 35.0 | 140 | 0.5704 | 0.9453 |
0.5385 | 36.0 | 144 | 0.5728 | 0.9453 |
0.5385 | 37.0 | 148 | 0.5737 | 0.9297 |
0.5381 | 38.0 | 152 | 0.5749 | 0.9375 |
0.5381 | 39.0 | 156 | 0.5754 | 0.9375 |
0.5389 | 40.0 | 160 | 0.5742 | 0.9375 |
0.5389 | 41.0 | 164 | 0.5723 | 0.9375 |
0.5389 | 42.0 | 168 | 0.5720 | 0.9375 |
0.5372 | 43.0 | 172 | 0.5694 | 0.9453 |
0.5372 | 44.0 | 176 | 0.5723 | 0.9375 |
0.5384 | 45.0 | 180 | 0.5766 | 0.9375 |
0.5384 | 46.0 | 184 | 0.5715 | 0.9375 |
0.5384 | 47.0 | 188 | 0.5696 | 0.9453 |
0.5379 | 48.0 | 192 | 0.5709 | 0.9453 |
0.5379 | 49.0 | 196 | 0.5720 | 0.9453 |
0.5372 | 50.0 | 200 | 0.5717 | 0.9453 |
0.5372 | 51.0 | 204 | 0.5706 | 0.9453 |
0.5372 | 52.0 | 208 | 0.5697 | 0.9453 |
0.5371 | 53.0 | 212 | 0.5700 | 0.9453 |
0.5371 | 54.0 | 216 | 0.5706 | 0.9453 |
0.5368 | 55.0 | 220 | 0.5697 | 0.9453 |
0.5368 | 56.0 | 224 | 0.5702 | 0.9453 |
0.5368 | 57.0 | 228 | 0.5719 | 0.9453 |
0.5371 | 58.0 | 232 | 0.5728 | 0.9453 |
0.5371 | 59.0 | 236 | 0.5729 | 0.9375 |
0.5371 | 60.0 | 240 | 0.5734 | 0.9375 |
0.5371 | 61.0 | 244 | 0.5736 | 0.9375 |
0.5371 | 62.0 | 248 | 0.5745 | 0.9375 |
0.5369 | 63.0 | 252 | 0.5760 | 0.9375 |
0.5369 | 64.0 | 256 | 0.5772 | 0.9375 |
0.5365 | 65.0 | 260 | 0.5771 | 0.9375 |
0.5365 | 66.0 | 264 | 0.5763 | 0.9375 |
0.5365 | 67.0 | 268 | 0.5759 | 0.9375 |
0.5365 | 68.0 | 272 | 0.5753 | 0.9375 |
0.5365 | 69.0 | 276 | 0.5751 | 0.9375 |
0.5369 | 70.0 | 280 | 0.5746 | 0.9375 |
0.5369 | 71.0 | 284 | 0.5741 | 0.9375 |
0.5369 | 72.0 | 288 | 0.5742 | 0.9375 |
0.5367 | 73.0 | 292 | 0.5742 | 0.9375 |
0.5367 | 74.0 | 296 | 0.5741 | 0.9375 |
0.5368 | 75.0 | 300 | 0.5741 | 0.9375 |
Framework versions
- Transformers 4.32.0.dev0
- Pytorch 2.0.1+cu118
- Datasets 2.4.0
- Tokenizers 0.13.3