breeze-dsw-base-ml / README.md
hanasim's picture
End of training
3674cba verified
|
raw
history blame
2.24 kB
metadata
language:
  - ml
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_16_0
metrics:
  - wer
model-index:
  - name: Breeze DSW Malayalam - base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: mozilla-foundation/common_voice_16_0 ml
          type: mozilla-foundation/common_voice_16_0
          config: ml
          split: test
          args: ml
        metrics:
          - name: Wer
            type: wer
            value: 42.72474513438369

Breeze DSW Malayalam - base

This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_16_0 ml dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6260
  • Wer: 42.7247

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.3151 4.02 200 0.4517 54.5134
0.0703 9.02 400 0.4561 46.7285
0.0144 14.02 600 0.5625 43.7627
0.006 19.02 800 0.6260 42.7247
0.0024 24.02 1000 0.6938 43.0306
0.0012 29.02 1200 0.7354 44.2169

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0