hanasim's picture
Model save
dbbd393 verified
|
raw
history blame
2.37 kB
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - generated_from_trainer
datasets:
  - common_voice_16_0
metrics:
  - wer
model-index:
  - name: breeze-listen-dsw-base-id
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: common_voice_16_0
          type: common_voice_16_0
          config: id
          split: test
          args: id
        metrics:
          - name: Wer
            type: wer
            value: 33.82555892906431

breeze-listen-dsw-base-id

This model is a fine-tuned version of openai/whisper-base on the common_voice_16_0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.6528
  • Wer: 33.8256

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.5452 1.02 200 0.5464 35.1688
0.3445 2.04 400 0.5405 34.0694
0.1397 3.07 600 0.5347 32.8273
0.0988 5.01 800 0.5654 35.6749
0.077 6.03 1000 0.5786 33.9452
0.0338 7.05 1200 0.6050 33.9820
0.0137 8.08 1400 0.6221 34.1016
0.0153 10.02 1600 0.6431 33.9038
0.0125 11.04 1800 0.6514 33.7520
0.0092 12.06 2000 0.6528 33.8256

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0