Breeze DSW Kannada - base

This model is a fine-tuned version of openai/whisper-base on the google/fleurs kn_in dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2258
  • Wer: 30.6127

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 1000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.7196 1.03 100 0.5166 55.2130
0.2769 2.06 200 0.2532 36.1594
0.1896 4.02 300 0.2167 32.7298
0.1384 5.04 400 0.2037 31.8356
0.1099 7.0 500 0.2030 31.0560
0.0707 8.03 600 0.2153 31.2453
0.052 9.06 700 0.2258 30.6127
0.0375 11.02 800 0.2413 31.2204
0.0256 12.05 900 0.2507 31.0635
0.0245 14.01 1000 0.2549 31.1059

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0
Downloads last month
10
Safetensors
Model size
99.1M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for simpragma/breeze-listen-dsw-base-kn

Finetuned
(398)
this model

Dataset used to train simpragma/breeze-listen-dsw-base-kn

Collection including simpragma/breeze-listen-dsw-base-kn

Evaluation results