hanasim's picture
End of training
deed02c verified
metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
  - whisper-event
  - generated_from_trainer
datasets:
  - google/fleurs
metrics:
  - wer
model-index:
  - name: Breeze DSW Telugu - base
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: google/fleurs te_in
          type: google/fleurs
          config: te_in
          split: test
          args: te_in
        metrics:
          - name: Wer
            type: wer
            value: 37.45436058603319

Breeze DSW Telugu - base

This model is a fine-tuned version of openai/whisper-base on the google/fleurs te_in dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3372
  • Wer: 37.4544

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 32
  • eval_batch_size: 16
  • seed: 42
  • distributed_type: multi-GPU
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 2000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.2937 2.03 200 0.3237 42.5614
0.1611 5.02 400 0.2756 38.9148
0.0889 8.01 600 0.2930 38.1106
0.0456 11.0 800 0.3372 37.4544
0.0229 13.03 1000 0.3982 37.9258
0.0103 16.02 1200 0.4473 38.2678
0.0042 19.02 1400 0.4836 37.8980
0.0025 22.01 1600 0.5083 37.7317
0.002 24.04 1800 0.5220 37.8010
0.0018 27.03 2000 0.5269 37.9027

Framework versions

  • Transformers 4.37.0.dev0
  • Pytorch 2.1.2+cu121
  • Datasets 2.16.2.dev0
  • Tokenizers 0.15.0