Files changed (5) hide show
  1. .gitattributes +1 -0
  2. README.md +118 -0
  3. config.json +25 -0
  4. pytorch_model.bin +3 -0
  5. tokenizer.json +3 -0
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,118 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ language:
3
+ - de
4
+ - en
5
+ - es
6
+ - fr
7
+ - it
8
+ - ja
9
+ - nl
10
+ - pt
11
+ - zh
12
+ ---
13
+
14
+ # Model Card for `passage-ranker.strawberry`
15
+
16
+ This model is a passage ranker developed by Sinequa. It produces a relevance score given a query-passage pair and is
17
+ used to order search results.
18
+
19
+ Model name: `passage-ranker.strawberry`
20
+
21
+ ## Supported Languages
22
+
23
+ The model was trained and tested in the following languages:
24
+
25
+ - Chinese
26
+ - Dutch
27
+ - English
28
+ - French
29
+ - German
30
+ - Italian
31
+ - Japanese
32
+ - Portuguese
33
+ - Spanish
34
+
35
+ Besides the aforementioned languages, basic support can be expected for additional 91 languages that were used during
36
+ the pretraining of the base model (see Appendix A of [XLM-R paper](https://arxiv.org/abs/1911.02116)).
37
+
38
+ ## Scores
39
+
40
+ | Metric | Value |
41
+ |:--------------------|------:|
42
+ | Relevance (NDCG@10) | 0.451 |
43
+
44
+ Note that the relevance score is computed as an average over 14 retrieval datasets (see
45
+ [details below](#evaluation-metrics)).
46
+
47
+ ## Inference Times
48
+
49
+ | GPU | Batch size 32 |
50
+ |:-----------|--------------:|
51
+ | NVIDIA A10 | 22 ms |
52
+ | NVIDIA T4 | 63 ms |
53
+
54
+ The inference times only measure the time the model takes to process a single batch, it does not include pre- or
55
+ post-processing steps like the tokenization.
56
+
57
+ ## Requirements
58
+
59
+ - Minimal Sinequa version: 11.10.0
60
+ - GPU memory usage: 1060 MiB
61
+
62
+ Note that GPU memory usage only includes how much GPU memory the actual model consumes on an NVIDIA T4 GPU with a batch
63
+ size of 32. It does not include the fix amount of memory that is consumed by the ONNX Runtime upon initialization which
64
+ can be around 0.5 to 1 GiB depending on the used GPU.
65
+
66
+ ## Model Details
67
+
68
+ ### Overview
69
+
70
+ - Number of parameters: 107 million
71
+ - Base language model:
72
+ [mMiniLMv2-L6-H384-distilled-from-XLMR-Large](https://huggingface.co/nreimers/mMiniLMv2-L6-H384-distilled-from-XLMR-Large)
73
+ ([Paper](https://arxiv.org/abs/2012.15828), [GitHub](https://github.com/microsoft/unilm/tree/master/minilm))
74
+ - Insensitive to casing and accents
75
+ - Training procedure: [MonoBERT](https://arxiv.org/abs/1901.04085)
76
+
77
+ ### Training Data
78
+
79
+ - MS MARCO Passage Ranking
80
+ ([Paper](https://arxiv.org/abs/1611.09268),
81
+ [Official Page](https://microsoft.github.io/msmarco/),
82
+ [English & translated datasets on the HF dataset hub](https://huggingface.co/datasets/unicamp-dl/mmarco))
83
+ - Original English dataset
84
+ - Translated datasets for the other eight supported languages
85
+
86
+ ### Evaluation Metrics
87
+
88
+ To determine the relevance score, we averaged the results that we obtained when evaluating on the datasets of the
89
+ [BEIR benchmark](https://github.com/beir-cellar/beir). Note that all these datasets are in English.
90
+
91
+ | Dataset | NDCG@10 |
92
+ |:------------------|--------:|
93
+ | Average | 0.451 |
94
+ | | |
95
+ | Arguana | 0.527 |
96
+ | CLIMATE-FEVER | 0.167 |
97
+ | DBPedia Entity | 0.343 |
98
+ | FEVER | 0.698 |
99
+ | FiQA-2018 | 0.297 |
100
+ | HotpotQA | 0.648 |
101
+ | MS MARCO | 0.409 |
102
+ | NFCorpus | 0.317 |
103
+ | NQ | 0.430 |
104
+ | Quora | 0.761 |
105
+ | SCIDOCS | 0.135 |
106
+ | SciFact | 0.597 |
107
+ | TREC-COVID | 0.670 |
108
+ | Webis-Touche-2020 | 0.311 |
109
+
110
+ We evaluated the model on the datasets of the [MIRACL benchmark](https://github.com/project-miracl/miracl) to test its
111
+ multilingual capacities. Note that not all training languages are part of the benchmark, so we only report the metrics
112
+ for the existing languages.
113
+
114
+ | Language | NDCG@10 |
115
+ |:---------|--------:|
116
+ | French | 0.382 |
117
+ | German | 0.320 |
118
+ | Spanish | 0.418 |
config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "XLMRobertaForSequenceClassification"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "bos_token_id": 0,
7
+ "classifier_dropout": null,
8
+ "eos_token_id": 2,
9
+ "hidden_act": "gelu",
10
+ "hidden_dropout_prob": 0.1,
11
+ "hidden_size": 384,
12
+ "initializer_range": 0.02,
13
+ "intermediate_size": 1536,
14
+ "layer_norm_eps": 1e-05,
15
+ "max_position_embeddings": 514,
16
+ "model_type": "xlm-roberta",
17
+ "num_attention_heads": 12,
18
+ "num_hidden_layers": 6,
19
+ "pad_token_id": 1,
20
+ "position_embedding_type": "absolute",
21
+ "transformers_version": "4.29.1",
22
+ "type_vocab_size": 1,
23
+ "use_cache": true,
24
+ "vocab_size": 250002
25
+ }
pytorch_model.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d4fcc8d9e5d2215dab8cf1ed3fadac8a1adc62342cd5ec2e1459692601b64d6
3
+ size 428016301
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5d07c8482c5c690555469d15a56e47647949df408bb806dafb91e493ac4d3296
3
+ size 17082867