librarian-bot's picture
Librarian Bot: Update dataset YAML metadata for model
6521a31
|
raw
history blame
6.4 kB
metadata
language:
  - ru
tags:
  - sentiment analysis
  - Russian
datasets: sismetanin/rureviews

XLM-RoBERTa-Base-ru-sentiment-RuReviews

XLM-RoBERTa-Base-ru-sentiment-RuReviews is a XLM-RoBERTa-Base model fine-tuned on RuReviews dataset of Russian-language reviews from the ”Women’s Clothes and Accessories” product category on the primary e-commerce site in Russia.

Model Score
Rank Dataset
SentiRuEval-2016
RuSentiment KRND LINIS Crowd RuTweetCorp RuReviews
TC Banks
micro F1 macro F1 F1 micro F1 macro F1 F1 wighted F1 F1 F1 F1 F1
SOTA n/s 76.71 66.40 70.68 67.51 69.53 74.06 78.50 n/s 73.63 60.51 83.68 77.44
XLM-RoBERTa-Large 76.37 1 82.26 76.36 79.42 76.35 76.08 80.89 78.31 75.27 75.17 60.03 88.91 78.81
SBERT-Large 75.43 2 78.40 71.36 75.14 72.39 71.87 77.72 78.58 75.85 74.20 60.64 88.66 77.41
MBARTRuSumGazeta 74.70 3 76.06 68.95 73.04 72.34 71.93 77.83 76.71 73.56 74.18 60.54 87.22 77.51
Conversational RuBERT 74.44 4 76.69 69.09 73.11 69.44 68.68 75.56 77.31 74.40 73.10 59.95 87.86 77.78
LaBSE 74.11 5 77.00 69.19 73.55 70.34 69.83 76.38 74.94 70.84 73.20 59.52 87.89 78.47
XLM-RoBERTa-Base 73.60 6 76.35 69.37 73.42 68.45 67.45 74.05 74.26 70.44 71.40 60.19 87.90 78.28
RuBERT 73.45 7 74.03 66.14 70.75 66.46 66.40 73.37 75.49 71.86 72.15 60.55 86.99 77.41
MBART-50-Large-Many-to-Many 73.15 8 75.38 67.81 72.26 67.13 66.97 73.85 74.78 70.98 71.98 59.20 87.05 77.24
SlavicBERT 71.96 9 71.45 63.03 68.44 64.32 63.99 71.31 72.13 67.57 72.54 58.70 86.43 77.16
EnRuDR-BERT 71.51 10 72.56 64.74 69.07 61.44 60.21 68.34 74.19 69.94 69.33 56.55 87.12 77.95
RuDR-BERT 71.14 11 72.79 64.23 68.36 61.86 60.92 68.48 74.65 70.63 68.74 54.45 87.04 77.91
MBART-50-Large 69.46 12 70.91 62.67 67.24 61.12 60.25 68.41 72.88 68.63 70.52 46.39 86.48 77.52

The table shows per-task scores and a macro-average of those scores to determine a models’s position on the leaderboard. For datasets with multiple evaluation metrics (e.g., macro F1 and weighted F1 for RuSentiment), we use an unweighted average of the metrics as the score for the task when computing the overall macro-average. The same strategy for comparing models’ results was applied in the GLUE benchmark.

Citation

If you find this repository helpful, feel free to cite our publication:

@article{Smetanin2021Deep,
  author = {Sergey Smetanin and Mikhail Komarov},
  title = {Deep transfer learning baselines for sentiment analysis in Russian},
  journal = {Information Processing & Management},
  volume = {58},
  number = {3},
  pages = {102484},
  year = {2021},
  issn = {0306-4573},
  doi = {0.1016/j.ipm.2020.102484}
}

Dataset:

@INPROCEEDINGS{Smetanin2019Sentiment,
  author={Sergey Smetanin and Michail Komarov},
  booktitle={2019 IEEE 21st Conference on Business Informatics (CBI)},
  title={Sentiment Analysis of Product Reviews in Russian using Convolutional Neural Networks},
  year={2019},
  volume={01},
  pages={482-486},
  doi={10.1109/CBI.2019.00062},
  ISSN={2378-1963},
  month={July}
}