speechllm-2B / README.md
shangeth's picture
Update README.md
5813766 verified
|
raw
history blame
3.99 kB
---
language:
- en
license: apache-2.0
library_name: transformers
datasets:
- mozilla-foundation/common_voice_16_1
- openslr/librispeech_asr
metrics:
- wer
- accuracy
model-index:
- name: SpeechLLM
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- type: wer
value: 7.3
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- type: wer
value: 10.47
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 16.1
type: common_voice_16_1
split: test
args:
language: en
metrics:
- type: wer
value: 24.47
name: Test WER
- task:
type: audio-classification
name: Audio Classification
dataset:
name: Common Voice 16.1
type: common_voice_16_1
split: test
args:
language: en
metrics:
- type: accuracy
value: 60.61
name: Test Age Accuracy
- task:
type: audio-classification
name: Audio Classification
dataset:
name: Common Voice 16.1
type: common_voice_16_1
split: test
args:
language: en
metrics:
- type: accuracy
value: 61.56
name: Test Accent Accuracy
---
# SpeechLLM
[The model is still training, we will be releasing the latest checkpoints soon...]
SpeechLLM is a multi-modal LLM trained to predict the metadata of the speaker's turn in a conversation. speechllm-2B model is based on HubertX audio encoder and TinyLlama LLM. The model predicts the following:
1. **SpeechActivity** : if the audio signal contains speech (True/False)
2. **Transcript** : ASR transcript of the audio
3. **Gender** of the speaker (Female/Male)
4. **Age** of the speaker (Young/Middle-Age/Senior)
5. **Accent** of the speaker (Africa/America/Celtic/Europe/Oceania/South-Asia/South-East-Asia)
6. **Emotion** of the speaker (Happy/Sad/Anger/Neutral/Frustrated)
## Usage
```python
# Load model directly from huggingface
from transformers import AutoModel
model = AutoModel.from_pretrained("skit-ai/speechllm-2B", trust_remote_code=True)
model.generate_meta(
audio_path="path-to-audio.wav",
instruction="Give me the following information about the audio [SpeechActivity, Transcript, Gender, Emotion, Age, Accent]",
max_new_tokens=500,
return_special_tokens=False
)
# Model Generation
'''
{
"SpeechActivity" : "True",
"Transcript": "Yes, I got it. I'll make the payment now.",
"Gender": "Female",
"Emotion": "Neutral",
"Age": "Young",
"Accent" : "America",
}
'''
```
## Model Details
- **Developed by:** Skit AI
- **Authors:** [Shangeth Rajaa](https://huggingface.co/shangeth), [Abhinav Tushar](https://huggingface.co/lepisma)
- **Language:** English
- **Finetuned from model:** [HubertX](https://huggingface.co/facebook/hubert-xlarge-ll60k), [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
- **Model Size:** 2.1 B
- **Checkpoint:** 2000 k steps (bs=1)
- **Adapters:** r=4, alpha=8
- **lr** : 1e-4
- **gradient accumulation steps:** 8
## Checkpoint Result
| **Dataset** | **Word Error Rate** | **Gender Acc** | **Age Acc** | **Accent Acc** |
|:----------------------:|:----------------------:|:-------------:|:----------:|:-------------:|
| librispeech-test-clean | 0.0736 | 0.9490 | | |
| librispeech-test-other | 0.1047 | 0.9099 | | |
| CommonVoice test | 0.2447 | 0.8680 | 0.6061 | 0.6156 |