speechllm-2B / README.md
shangeth's picture
Update README.md
75328d0 verified
|
raw
history blame
4.64 kB
---
language:
- en
license: apache-2.0
library_name: transformers
tags:
- multi-modal
- speech-language
datasets:
- mozilla-foundation/common_voice_16_1
- openslr/librispeech_asr
- MLCommons/ml_spoken_words
- Ar4ikov/iemocap_audio_text_splitted
metrics:
- wer
- accuracy
model-index:
- name: SpeechLLM
results:
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (clean)
type: librispeech_asr
config: clean
split: test
args:
language: en
metrics:
- type: wer
value: 6.73
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: LibriSpeech (other)
type: librispeech_asr
config: other
split: test
args:
language: en
metrics:
- type: wer
value: 9.13
name: Test WER
- task:
type: automatic-speech-recognition
name: Automatic Speech Recognition
dataset:
name: Common Voice 16.1
type: common_voice_16_1
split: test
args:
language: en
metrics:
- type: wer
value: 25.66
name: Test WER
- task:
type: audio-classification
name: Audio Classification
dataset:
name: Common Voice 16.1
type: common_voice_16_1
split: test
args:
language: en
metrics:
- type: accuracy
value: 60.41
name: Test Age Accuracy
- type: accuracy
value: 69.59
name: Test Accent Accuracy
---
# SpeechLLM
[![github](https://img.shields.io/badge/-Github-black?logo=github)](https://github.com/skit-ai/SpeechLLM.git)
[![Code License](https://img.shields.io/badge/Code%20License-Apache_2.0-green.svg)](https://github.com/skit-ai/SpeechLLM/blob/main/LICENSE)
[![Open in Colab](https://img.shields.io/badge/Open%20in%20Colab-F9AB00?logo=googlecolab&color=blue)](https://colab.research.google.com/drive/1uqhRl36LJKA4IxnrhplLMv0wQ_f3OuBM?usp=sharing)
![](./speechllm.png)
SpeechLLM is a multi-modal LLM trained to predict the metadata of the speaker's turn in a conversation. speechllm-2B model is based on HubertX audio encoder and TinyLlama LLM. The model predicts the following:
1. **SpeechActivity** : if the audio signal contains speech (True/False)
2. **Transcript** : ASR transcript of the audio
3. **Gender** of the speaker (Female/Male)
4. **Age** of the speaker (Young/Middle-Age/Senior)
5. **Accent** of the speaker (Africa/America/Celtic/Europe/Oceania/South-Asia/South-East-Asia)
6. **Emotion** of the speaker (Happy/Sad/Anger/Neutral/Frustrated)
## Usage
```python
# Load model directly from huggingface
from transformers import AutoModel
model = AutoModel.from_pretrained("skit-ai/speechllm-2B", trust_remote_code=True)
model.generate_meta(
audio_path="path-to-audio.wav", #16k Hz, mono
audio_tensor=torchaudio.load("path-to-audio.wav")[1], # [Optional] either audio_path or audio_tensor directly
instruction="Give me the following information about the audio [SpeechActivity, Transcript, Gender, Emotion, Age, Accent]",
max_new_tokens=500,
return_special_tokens=False
)
# Model Generation
'''
{
"SpeechActivity" : "True",
"Transcript": "Yes, I got it. I'll make the payment now.",
"Gender": "Female",
"Emotion": "Neutral",
"Age": "Young",
"Accent" : "America",
}
'''
```
Try the model in [Google Colab Notebook](https://colab.research.google.com/drive/1uqhRl36LJKA4IxnrhplLMv0wQ_f3OuBM?usp=sharing).
## Model Details
- **Developed by:** Skit AI
- **Authors:** [Shangeth Rajaa](https://huggingface.co/shangeth), [Abhinav Tushar](https://huggingface.co/lepisma)
- **Language:** English
- **Finetuned from model:** [HubertX](https://huggingface.co/facebook/hubert-xlarge-ll60k), [TinyLlama](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0)
- **Model Size:** 2.1 B
- **Checkpoint:** 2000 k steps (bs=1)
- **Adapters:** r=4, alpha=8
- **lr** : 1e-4
- **gradient accumulation steps:** 8
## Checkpoint Result
| **Dataset** | **Type** | **Word Error Rate** | **Gender Acc** | **Age Acc** | **Accent Acc** |
|:--------------------------:|:-------------------:|:-------------------:|:--------------:|:-----------:|:--------------:|
| **librispeech-test-clean** | Read Speech | 6.73 | 0.9496 | | |
| **librispeech-test-other** | Read Speech | 9.13 | 0.9217 | | |
| **CommonVoice test** | Diverse Accent, Age | 25.66 | 0.8680 | 0.6041 | 0.6959 |