speechllm-2B / model.py
shangeth's picture
Upload model
053eb5b verified
raw
history blame
5.04 kB
import torch
from torch import nn
import torchaudio
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoTokenizer, HubertModel, AutoProcessor
from .config import SpeechLLMModelConfig
from peft import LoraConfig, get_peft_model
class HubertXCNNEnoder(nn.Module):
def __init__(self, audio_enc_dim, llm_dim, encoder_name):
super().__init__()
self.encoder = HubertModel.from_pretrained(encoder_name)
self.cnn = nn.Sequential(
nn.ReLU(),
nn.Conv1d(audio_enc_dim, llm_dim // 2, kernel_size=5, stride=1, padding=0),
nn.ReLU(),
nn.Conv1d(llm_dim // 2, llm_dim, kernel_size=5, stride=2, padding=0),
nn.ReLU(),
nn.Conv1d(llm_dim, llm_dim, kernel_size=3, stride=1, padding=0),
)
def forward(self, x):
x = self.encoder(x).last_hidden_state
x = self.cnn(x.transpose(1, 2)).transpose(1, 2)
return x
def return_device(self):
return next(self.parameters()).device
class SpeechLLMModel(PreTrainedModel):
config_class = SpeechLLMModelConfig
def __init__(self, config):
super().__init__(config)
self.audio_processor = AutoProcessor.from_pretrained(config.audio_processor_name)
self.audio_encoder = HubertXCNNEnoder(config.audio_enc_dim, config.llm_dim, config.audio_encoder_name)
self.llm_model = AutoModelForCausalLM.from_pretrained(config.llm_model_checkpoint)
self.llm_tokenizer = AutoTokenizer.from_pretrained(config.llm_model_name)
# self.llm_model = AutoModelForCausalLM.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
# self.llm_tokenizer = AutoTokenizer.from_pretrained("TinyLlama/TinyLlama-1.1B-Chat-v1.0")
# peft_config = LoraConfig(
# r=4,
# lora_alpha=8,
# target_modules=['q_proj', 'k_proj', 'v_proj', 'o_proj', 'up_proj', 'down_proj', 'gate_proj'],
# lora_dropout=0.05,
# task_type="CAUSAL_LM",
# )
# self.llm_model = get_peft_model(self.llm_model, peft_config)
def encode(self, mel, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids):
batch_size = mel.shape[0]
with torch.no_grad():
speech_embeds = self.audio_encoder(mel)
embedder = self.llm_model.model.embed_tokens
pre_prompt_embeds = embedder(pre_tokenized_ids)
post_prompt_embeds = embedder(post_tokenized_ids)
output_prompt_embeds = embedder(output_tokenized_ids)
combined_embeds = torch.cat([pre_prompt_embeds, speech_embeds, post_prompt_embeds, output_prompt_embeds], dim=1)
atts = torch.ones(combined_embeds.size()[:-1], dtype=torch.long).to(combined_embeds.device)
input_token_length = pre_tokenized_ids.shape[1] + speech_embeds.shape[1] + post_tokenized_ids.shape[1]
label_ids = torch.cat([
torch.ones([batch_size, input_token_length], device=combined_embeds.device) * -100,
output_tokenized_ids
], 1).to(combined_embeds.device).to(torch.int64)
return combined_embeds, atts, label_ids
def forward(self, wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids, attention_mask=None):
combined_embeds, atts, label_ids = self.encode(wav_tensor, pre_tokenized_ids, post_tokenized_ids, output_tokenized_ids)
outputs = self.llm_model(inputs_embeds=combined_embeds, attention_mask=attention_mask)
return outputs
def generate_meta(self, audio_path, instruction="Give me the following information about the audio [Transcript]", max_new_tokens=2000):
device = self.audio_encoder.return_device()
pre_speech_prompt = f'''Instruction:
{instruction}
Input:
<speech>'''
post_speech_prompt = f'''</speech>
Output:'''
output_prompt = '\n<s>'
with torch.no_grad():
wav_tensor, sr = torchaudio.load(audio_path)
wav_tensor = self.audio_processor(wav_tensor.squeeze(), return_tensors="pt", sampling_rate=16000).input_values
pre_tokenized_ids = self.llm_tokenizer(pre_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
post_tokenized_ids = self.llm_tokenizer(post_speech_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
output_tokenized_ids = self.llm_tokenizer(output_prompt, padding="do_not_pad", return_tensors='pt', truncation=False, add_special_tokens=False)["input_ids"]
combined_embeds, atts, label_ids = self.encode(wav_tensor.to(device), pre_tokenized_ids.to(device), post_tokenized_ids.to(device), output_tokenized_ids.to(device))
out = self.llm_model.generate(
inputs_embeds=combined_embeds,
max_new_tokens=max_new_tokens,
).cpu().tolist()[0]
output_text = self.llm_tokenizer.decode(out, skip_special_tokens=True)
return output_text