skypro1111's picture
Update README.md
8335936 verified
|
raw
history blame
5.2 kB
---
library_name: transformers
license: mit
datasets:
- skypro1111/ubertext-2-news-verbalized
language:
- uk
---
# Model Card for mbart-large-50-verbalization
## Model Description
`mbart-large-50-verbalization` is a fine-tuned version of the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) model, specifically designed for the task of verbalizing Ukrainian text to prepare it for Text-to-Speech (TTS) systems. This model aims to transform structured data like numbers and dates into their fully expanded textual representations in Ukrainian.
## Architecture
This model is based on the [facebook/mbart-large-50](https://huggingface.co/facebook/mbart-large-50) architecture, renowned for its effectiveness in translation and text generation tasks across numerous languages.
## Training Data
The model was fine-tuned on a subset of 96,780 sentences from the Ubertext dataset, focusing on news content. The verbalized equivalents were created using Google Gemini Pro, providing a rich basis for learning text transformation tasks.
Dataset [skypro1111/ubertext-2-news-verbalized](https://huggingface.co/datasets/skypro1111/ubertext-2-news-verbalized)
## Training Procedure
The model underwent 70,000 training steps, which is almost 2 epochs, with further training the results degraded.
```python
from transformers import MBartForConditionalGeneration, AutoTokenizer, Trainer, TrainingArguments
from datasets import load_dataset, DatasetDict
import torch
model_name = "facebook/mbart-large-50"
dataset = load_dataset("skypro1111/ubertext-2-news-verbalized")
dataset = dataset.train_test_split(test_size=0.1)
datasets = DatasetDict({
'train': dataset['train'],
'test': dataset['test']
})
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.src_lang = "uk_XX"
tokenizer.tgt_lang = "uk_XX"
def preprocess_data(examples):
model_inputs = tokenizer(examples["inputs"], max_length=1024, truncation=True, padding="max_length")
with tokenizer.as_target_tokenizer():
labels = tokenizer(examples["labels"], max_length=1024, truncation=True, padding="max_length")
model_inputs["labels"] = labels["input_ids"]
return model_inputs
datasets = datasets.map(preprocess_data, batched=True)
model = MBartForConditionalGeneration.from_pretrained(model_name)
training_args = TrainingArguments(
output_dir=f"./results/{model_name}-verbalization",
evaluation_strategy="steps",
eval_steps=5000,
save_strategy="steps",
save_steps=1000,
save_total_limit=40,
learning_rate=2e-5,
per_device_train_batch_size=2,
per_device_eval_batch_size=2,
num_train_epochs=2,
weight_decay=0.01,
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=datasets["train"],
eval_dataset=datasets["test"],
)
trainer.train()
trainer.save_model(f"./saved_models/{model_name}-verbalization")
```
## Usage
```python
from transformers import MBartForConditionalGeneration, AutoTokenizer
import torch
device = "cuda" if torch.cuda.is_available() else "cpu"
model_name = "skypro1111/mbart-large-50-verbalization"
model = T5ForConditionalGeneration.from_pretrained(
model_name,
low_cpu_mem_usage=True,
device_map=device,
)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_name)
tokenizer.src_lang = "uk_XX"
tokenizer.tgt_lang = "uk_XX"
input_text = "<verbalization>:Цей додаток вийде 15.06.2025."
encoded_input = tokenizer(input_text, return_tensors="pt", padding=True, truncation=True, max_length=1024).to(device)
output_ids = model.generate(**encoded_input, max_length=1024, num_beams=5, early_stopping=True)
output_text = tokenizer.decode(output_ids[0], skip_special_tokens=True)
print(output_text)
```
## Performance
Evaluation metrics were not explicitly used for this model. Its performance is primarily demonstrated through its application in enhancing the naturalness of TTS outputs.
## Limitations and Ethical Considerations
Users should be aware of the model's potential limitations in understanding highly nuanced or domain-specific content. Ethical considerations, including fairness and bias, are also crucial when deploying this model in real-world applications.
## Citation
Ubertext 2.0
```
@inproceedings{chaplynskyi-2023-introducing,
title = "Introducing {U}ber{T}ext 2.0: A Corpus of Modern {U}krainian at Scale",
author = "Chaplynskyi, Dmytro",
booktitle = "Proceedings of the Second Ukrainian Natural Language Processing Workshop",
month = may,
year = "2023",
address = "Dubrovnik, Croatia",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2023.unlp-1.1",
pages = "1--10",
}
```
mBart-large-50
```
@article{tang2020multilingual,
title={Multilingual Translation with Extensible Multilingual Pretraining and Finetuning},
author={Yuqing Tang and Chau Tran and Xian Li and Peng-Jen Chen and Naman Goyal and Vishrav Chaudhary and Jiatao Gu and Angela Fan},
year={2020},
eprint={2008.00401},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
```
## License
This model is released under the MIT License, in line with the base mbart-large-50 model.