Translation
Transformers
PyTorch
Safetensors
mbart
text2text-generation
erzya
mordovian
Inference Endpoints

This a model to translate texts to the Erzya language (myv, cyrillic script) from 11 other languages: ru,fi,de,es,en,hi,zh,tr,uk,fr,ar. See its demo!

It is described in the paper The first neural machine translation system for the Erzya language.

This model is based on facebook/mbart-large-50, but with updated vocabulary and checkpoint:

  • Added an extra language token myv_XX and 19K new BPE tokens for the Erzya language;
  • Fine-tuned to translate from Erzya: first to Russian, then to all 11 languages.

The following code can be used to run translation using the model

from transformers import MBartForConditionalGeneration, MBart50Tokenizer


def fix_tokenizer(tokenizer):
    """ Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """
    old_len = len(tokenizer) - int('myv_XX' in tokenizer.added_tokens_encoder)
    tokenizer.lang_code_to_id['myv_XX'] = old_len-1
    tokenizer.id_to_lang_code[old_len-1] = 'myv_XX'
    tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset

    tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id)
    tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()}
    if 'myv_XX' not in tokenizer._additional_special_tokens:
        tokenizer._additional_special_tokens.append('myv_XX')
    tokenizer.added_tokens_encoder = {}


def translate(text, model, tokenizer, src='ru_RU', trg='myv_XX', max_length='auto', num_beams=3, repetition_penalty=5.0, train_mode=False, n_out=None, **kwargs):
    tokenizer.src_lang = src
    encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=1024)
    if max_length == 'auto':
        max_length = int(32 + 1.5 * encoded.input_ids.shape[1])
    if train_mode:
        model.train()
    else:
        model.eval()
    generated_tokens = model.generate(
        **encoded.to(model.device),
        forced_bos_token_id=tokenizer.lang_code_to_id[trg], 
        max_length=max_length, 
        num_beams=num_beams,
        repetition_penalty=repetition_penalty,
        num_return_sequences=n_out or 1,
        **kwargs
    )
    out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True)
    if isinstance(text, str) and n_out is None:
        return out[0]
    return out
    

mname = 'slone/mbart-large-51-myv-mul-v1'
model = MBartForConditionalGeneration.from_pretrained(mname)
tokenizer = MBart50Tokenizer.from_pretrained(mname)
fix_tokenizer(tokenizer)


print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='ru_RU'))
# Привет, собака!   # действительно, "киска" с эрзянского переводится именно так
print(translate('Шумбрат, киска!', model, tokenizer, src='myv_XX', trg='en_XX'))
# Hi, dog!
Downloads last month
10
Safetensors
Model size
631M params
Tensor type
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Datasets used to train slone/mbart-large-51-myv-mul-v1

Space using slone/mbart-large-51-myv-mul-v1 1