smallsuper's picture
Librarian Bot: Add base_model information to model (#1)
e1b87ac
---
license: mit
tags:
- generated_from_trainer
datasets:
- xtreme
metrics:
- f1
base_model: xlm-roberta-base
model-index:
- name: xlm-roberta-base-finetuned-panx-it
results:
- task:
type: token-classification
name: Token Classification
dataset:
name: xtreme
type: xtreme
args: PAN-X.it
metrics:
- type: f1
value: 0.8219402374130168
name: F1
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# xlm-roberta-base-finetuned-panx-it
This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the xtreme dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2564
- F1: 0.8219
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 24
- eval_batch_size: 24
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 3
### Training results
| Training Loss | Epoch | Step | Validation Loss | F1 |
|:-------------:|:-----:|:----:|:---------------:|:------:|
| 0.8123 | 1.0 | 70 | 0.3267 | 0.7418 |
| 0.2832 | 2.0 | 140 | 0.2694 | 0.8006 |
| 0.1766 | 3.0 | 210 | 0.2564 | 0.8219 |
### Framework versions
- Transformers 4.11.3
- Pytorch 1.13.1+cu116
- Datasets 1.16.1
- Tokenizers 0.10.3