|
--- |
|
library_name: transformers |
|
license: apache-2.0 |
|
base_model: Falconsai/medical_summarization |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- rouge |
|
model-index: |
|
- name: medical_summarization-finetuned-Medical-summary |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# medical_summarization-finetuned-Medical-summary |
|
|
|
This model is a fine-tuned version of [Falconsai/medical_summarization](https://huggingface.co/Falconsai/medical_summarization) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 1.2124 |
|
- Rouge1: 22.5658 |
|
- Rouge2: 14.2244 |
|
- Rougel: 20.2774 |
|
- Rougelsum: 21.7581 |
|
- Gen Len: 19.0 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 42 |
|
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments |
|
- lr_scheduler_type: linear |
|
- num_epochs: 1 |
|
- mixed_precision_training: Native AMP |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|:-------------:|:-----:|:----:|:---------------:|:-------:|:-------:|:-------:|:---------:|:-------:| |
|
| 1.3725 | 1.0 | 579 | 1.2124 | 22.5658 | 14.2244 | 20.2774 | 21.7581 | 19.0 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.46.2 |
|
- Pytorch 2.5.1+cu121 |
|
- Datasets 3.1.0 |
|
- Tokenizers 0.20.3 |
|
|