smitbutle's picture
End of training
7ea72ab
metadata
license: cc-by-nc-sa-4.0
base_model: microsoft/layoutlmv3-base
tags:
  - generated_from_trainer
datasets:
  - generated
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: document-data-extraction-layoutlmv3
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: generated
          type: generated
          config: sroie
          split: test
          args: sroie
        metrics:
          - name: Precision
            type: precision
            value: 1
          - name: Recall
            type: recall
            value: 1
          - name: F1
            type: f1
            value: 1
          - name: Accuracy
            type: accuracy
            value: 1

document-data-extraction-layoutlmv3

This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0015
  • Precision: 1.0
  • Recall: 1.0
  • F1: 1.0
  • Accuracy: 1.0

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • training_steps: 2000

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 100 0.1114 0.95 0.9635 0.9567 0.9947
No log 2.0 200 0.0286 0.972 0.9858 0.9789 0.9971
No log 3.0 300 0.0184 0.972 0.9858 0.9789 0.9971
No log 4.0 400 0.0163 0.972 0.9858 0.9789 0.9971
0.1385 5.0 500 0.0141 0.972 0.9858 0.9789 0.9971
0.1385 6.0 600 0.0123 0.972 0.9858 0.9789 0.9971
0.1385 7.0 700 0.0122 0.972 0.9858 0.9789 0.9971
0.1385 8.0 800 0.0108 0.972 0.9858 0.9789 0.9971
0.1385 9.0 900 0.0104 0.972 0.9858 0.9789 0.9971
0.0119 10.0 1000 0.0113 0.972 0.9858 0.9789 0.9971
0.0119 11.0 1100 0.0080 0.974 0.9878 0.9809 0.9973
0.0119 12.0 1200 0.0089 0.9856 0.9736 0.9796 0.9973
0.0119 13.0 1300 0.0034 0.9959 0.9959 0.9959 0.9994
0.0119 14.0 1400 0.0037 0.9980 0.9939 0.9959 0.9994
0.006 15.0 1500 0.0024 0.9960 0.9980 0.9970 0.9996
0.006 16.0 1600 0.0019 0.9980 1.0 0.9990 0.9998
0.006 17.0 1700 0.0022 0.9960 0.9980 0.9970 0.9996
0.006 18.0 1800 0.0017 1.0 1.0 1.0 1.0
0.006 19.0 1900 0.0015 1.0 1.0 1.0 1.0
0.0027 20.0 2000 0.0015 1.0 1.0 1.0 1.0

Framework versions

  • Transformers 4.36.0.dev0
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0