layoutlmv3-finetuned-invoice
This model is a fine-tuned version of microsoft/layoutlmv3-base on the generated dataset. It achieves the following results on the evaluation set:
- Loss: 2.1320
- Precision: 0.0104
- Recall: 0.0203
- F1: 0.0138
- Accuracy: 0.6785
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- training_steps: 5
Training results
Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
---|---|---|---|---|---|---|---|
No log | 0.01 | 1 | 2.3858 | 0.0114 | 0.0649 | 0.0194 | 0.1904 |
No log | 0.02 | 2 | 2.2795 | 0.0108 | 0.0527 | 0.0180 | 0.3240 |
No log | 0.03 | 3 | 2.2072 | 0.0131 | 0.0446 | 0.0203 | 0.5155 |
No log | 0.04 | 4 | 2.1575 | 0.0103 | 0.0243 | 0.0145 | 0.6345 |
No log | 0.05 | 5 | 2.1320 | 0.0104 | 0.0203 | 0.0138 | 0.6785 |
Framework versions
- Transformers 4.35.0.dev0
- Pytorch 2.1.0+cu121
- Datasets 2.14.6
- Tokenizers 0.14.1
- Downloads last month
- 77
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
Model tree for smitbutle/first-test-layoutlmv3-finetuned-invoice
Base model
microsoft/layoutlmv3-baseEvaluation results
- Precision on generatedtest set self-reported0.010
- Recall on generatedtest set self-reported0.020
- F1 on generatedtest set self-reported0.014
- Accuracy on generatedtest set self-reported0.679