|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- hakurei/open-instruct-v1 |
|
language: |
|
- en |
|
tags: |
|
- code |
|
- instruction-following |
|
widget: |
|
- text: Tell me how to bake a cake |
|
example_title: Baking cakes |
|
- text: How can I print a fibonacci series upto N in C++ |
|
example_title: Coding |
|
--- |
|
|
|
# DialoGPT2 Instruction Following |
|
|
|
This is the fine-tuned version of the [microsoft/dialogpt-small](https://huggingface.co/microsoft/DialoGPT-small) on the instruction following task. The dataset used was the [hakurei/open-instruct-v1](https://huggingface.co/datasets/hakurei/open-instruct-v1) dataset. |
|
|
|
## Using the model |
|
|
|
|
|
### Using `model.generate()` |
|
|
|
To use the model, first call the checkpoints and initialize the model |
|
|
|
```python |
|
# Load model directly |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
|
tokenizer = AutoTokenizer.from_pretrained("smji/dialogpt2-instruct-following") |
|
model = AutoModelForCausalLM.from_pretrained("smji/dialogpt2-instruct-following") |
|
``` |
|
|
|
And then move onto generating the text |
|
|
|
```python |
|
def generate_text(prompt): |
|
inputs = tokenizer.encode(prompt, return_tensors='pt').to(device) |
|
outputs = model.generate(inputs, max_length=512, pad_token_id=tokenizer.eos_token_id) |
|
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True) |
|
|
|
return generated_text[:generated_text.rfind('.')+1] |
|
|
|
generate_text("How can I bake a cake?") |
|
``` |
|
|
|
### Using the pipeline |
|
|
|
Or, you can also use the pipeline |
|
|
|
```python |
|
# Use a pipeline as a high-level helper |
|
from transformers import pipeline |
|
|
|
pipe = pipeline("text-generation", model="smji/dialogpt2-instruct-following") |
|
|
|
pipe("How can I bake a cake?", max_length=512) |
|
``` |
|
|
|
--- |
|
|
|
Done by [S M Jishanul Islam](https://github.com/S-M-J-I) |
|
|
|
|