See axolotl config
axolotl version: 0.4.1
adapter: lora
base_model: unsloth/gemma-2b-it
bf16: auto
chat_template: llama3
cosine_min_lr_ratio: 0.1
data_processes: 16
dataset_prepared_path: null
datasets:
- data_files:
- 6755b140e3dbc3a5_train_data.json
ds_type: json
format: custom
path: /workspace/input_data/6755b140e3dbc3a5_train_data.json
type:
field_instruction: article
field_output: ingress
format: '{instruction}'
no_input_format: '{instruction}'
system_format: '{system}'
system_prompt: ''
debug: null
deepspeed: null
device_map: '{'''':torch.cuda.current_device()}'
do_eval: true
early_stopping_patience: 1
eval_batch_size: 1
eval_sample_packing: false
eval_steps: 25
evaluation_strategy: steps
flash_attention: false
fp16: null
fsdp: null
fsdp_config: null
gradient_accumulation_steps: 64
gradient_checkpointing: true
group_by_length: true
hub_model_id: sn56/a3aef118-d5c4-4a66-9cad-1c6576184a25
hub_repo: stevemonite
hub_strategy: checkpoint
hub_token: null
learning_rate: 0.0002
load_in_4bit: false
load_in_8bit: false
local_rank: null
logging_steps: 1
lora_alpha: 32
lora_dropout: 0.05
lora_fan_in_fan_out: null
lora_model_dir: null
lora_r: 16
lora_target_linear: true
lora_target_modules:
- q_proj
- v_proj
lr_scheduler: cosine
max_grad_norm: 1.0
max_memory:
0: 70GiB
max_steps: 1600
micro_batch_size: 1
mlflow_experiment_name: /tmp/6755b140e3dbc3a5_train_data.json
model_type: AutoModelForCausalLM
num_epochs: 3
optim_args:
adam_beta1: 0.9
adam_beta2: 0.95
adam_epsilon: 1e-5
optimizer: adamw_torch
output_dir: miner_id_24
pad_to_sequence_len: true
resume_from_checkpoint: null
s2_attention: null
sample_packing: false
save_steps: 50
save_strategy: steps
sequence_len: 2048
strict: false
tf32: false
tokenizer_type: AutoTokenizer
torch_compile: false
train_on_inputs: false
trust_remote_code: true
val_set_size: 50
wandb_entity: sn56-miner
wandb_mode: disabled
wandb_name: a3aef118-d5c4-4a66-9cad-1c6576184a25
wandb_project: god
wandb_run: x1lv
wandb_runid: a3aef118-d5c4-4a66-9cad-1c6576184a25
warmup_raio: 0.03
warmup_ratio: 0.04
weight_decay: 0.01
xformers_attention: null
a3aef118-d5c4-4a66-9cad-1c6576184a25
This model is a fine-tuned version of unsloth/gemma-2b-it on the None dataset. It achieves the following results on the evaluation set:
- Loss: 1.8476
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 1
- eval_batch_size: 1
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 64
- total_train_batch_size: 256
- total_eval_batch_size: 4
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=adam_beta1=0.9,adam_beta2=0.95,adam_epsilon=1e-5
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 64
- training_steps: 1600
Training results
Training Loss | Epoch | Step | Validation Loss |
---|---|---|---|
3.7609 | 0.0014 | 1 | 3.9861 |
3.0499 | 0.0342 | 25 | 2.7601 |
2.4286 | 0.0683 | 50 | 2.3274 |
2.2835 | 0.1025 | 75 | 2.2020 |
2.1983 | 0.1366 | 100 | 2.1237 |
2.1024 | 0.1708 | 125 | 2.0570 |
2.1827 | 0.2049 | 150 | 2.0219 |
2.1869 | 0.2391 | 175 | 2.0059 |
2.0156 | 0.2733 | 200 | 1.9924 |
2.1717 | 0.3074 | 225 | 1.9814 |
1.994 | 0.3416 | 250 | 1.9634 |
2.1325 | 0.3757 | 275 | 1.9347 |
1.9053 | 0.4099 | 300 | 1.9331 |
2.0007 | 0.4440 | 325 | 1.9054 |
1.9177 | 0.4782 | 350 | 1.9128 |
1.9729 | 0.5123 | 375 | 1.8935 |
1.9146 | 0.5465 | 400 | 1.8807 |
1.9364 | 0.5807 | 425 | 1.8594 |
1.9185 | 0.6148 | 450 | 1.8585 |
1.8136 | 0.6490 | 475 | 1.8454 |
1.8548 | 0.6831 | 500 | 1.8400 |
1.8635 | 0.7173 | 525 | 1.8476 |
Framework versions
- PEFT 0.13.2
- Transformers 4.46.0
- Pytorch 2.5.0+cu124
- Datasets 3.0.1
- Tokenizers 0.20.1
- Downloads last month
- 6
Model tree for sn56/a3aef118-d5c4-4a66-9cad-1c6576184a25
Base model
unsloth/gemma-2b-it