|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- databricks/databricks-dolly-15k |
|
language: |
|
- en |
|
--- |
|
## 模型介绍 |
|
- 使用模型:LLaMA2-7B |
|
- 微调方法:QLoRA |
|
- 数据集:databricks/databricks-dolly-15k |
|
- 显卡:一张RTX4090 |
|
- 目标:对模型进行指令微调 |
|
## 使用方法 |
|
- 加载数据 |
|
``` |
|
from datasets import load_dataset |
|
from random import randrange |
|
|
|
|
|
# 从hub加载数据集并得到一个样本 |
|
dataset = load_dataset("databricks/databricks-dolly-15k", split="train") |
|
sample = dataset[randrange(len(dataset))] |
|
``` |
|
- 模型使用 |
|
``` |
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
import torch |
|
|
|
model_name_or_path = "snowfly/llama2-7b-QLoRA-dolly" |
|
tokenizer = AutoTokenizer.from_pretrained(pretrained_model_name_or_path=model_name_or_path, trust_remote_code=True) |
|
model = AutoModelForCausalLM.from_pretrained(pretrained_model_name_or_path=model_name_or_path, |
|
trust_remote_code=True, |
|
low_cpu_mem_usage=True, |
|
torch_dtype=torch.float16, |
|
load_in_4bit=True) |
|
model = model.eval() |
|
|
|
|
|
prompt = f"""### Instruction: |
|
Use the Input below to create an instruction, which could have been used to generate the input using an LLM. |
|
|
|
### Input: |
|
{sample['response']} |
|
|
|
### Response: |
|
""" |
|
|
|
input_ids = tokenizer(prompt, return_tensors="pt", truncation=True).input_ids.cuda() |
|
|
|
outputs = model.generate(input_ids=input_ids, max_new_tokens=100, do_sample=True, top_p=0.9,temperature=0.9) |
|
|
|
print(f"Prompt:\n{sample['response']}\n") |
|
print(f"Generated instruction:\n{tokenizer.batch_decode(outputs.detach().cpu().numpy(), skip_special_tokens=True)[0][len(prompt):]}") |
|
print(f"Ground truth:\n{sample['instruction']}") |
|
``` |