metadata
pipeline_tag: sentence-similarity
tags:
- sentence-transformers
- feature-extraction
- sentence-similarity
- transformers
language:
- ko
widget:
- source_sentence: 그 식당은 파리를 날린다
sentences:
- 그 식당은 손님이 없다
- 그 식당은 드론을 날린다
- 파리가 식당에 날아다닌다
example_title: Restaurant
- source_sentence: 잠이 옵니다
sentences:
- 잠이 안 옵니다
- 졸음이 옵니다
- 기차가 옵니다
example_title: Sleepy
snunlp/KR-SBERT-V40K-klueNLI-augSTS
This is a sentence-transformers model: It maps sentences & paragraphs to a 768 dimensional dense vector space and can be used for tasks like clustering or semantic search.
Usage (Sentence-Transformers)
Using this model becomes easy when you have sentence-transformers installed:
pip install -U sentence-transformers
Then you can use the model like this:
from sentence_transformers import SentenceTransformer
sentences = ["This is an example sentence", "Each sentence is converted"]
model = SentenceTransformer('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
embeddings = model.encode(sentences)
print(embeddings)
Usage (HuggingFace Transformers)
Without sentence-transformers, you can use the model like this: First, you pass your input through the transformer model, then you have to apply the right pooling-operation on-top of the contextualized word embeddings.
from transformers import AutoTokenizer, AutoModel
import torch
#Mean Pooling - Take attention mask into account for correct averaging
def mean_pooling(model_output, attention_mask):
token_embeddings = model_output[0] #First element of model_output contains all token embeddings
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)
# Sentences we want sentence embeddings for
sentences = ['This is an example sentence', 'Each sentence is converted']
# Load model from HuggingFace Hub
tokenizer = AutoTokenizer.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
model = AutoModel.from_pretrained('snunlp/KR-SBERT-V40K-klueNLI-augSTS')
# Tokenize sentences
encoded_input = tokenizer(sentences, padding=True, truncation=True, return_tensors='pt')
# Compute token embeddings
with torch.no_grad():
model_output = model(**encoded_input)
# Perform pooling. In this case, mean pooling.
sentence_embeddings = mean_pooling(model_output, encoded_input['attention_mask'])
print("Sentence embeddings:")
print(sentence_embeddings)
Evaluation Results
For an automated evaluation of this model, see the Sentence Embeddings Benchmark: https://seb.sbert.net
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False})
)
Application for document classification
Tutorial in Google Colab: https://colab.research.google.com/drive/1S6WSjOx9h6Wh_rX1Z2UXwx9i_uHLlOiM
Model | Accuracy |
---|---|
KR-SBERT-Medium-NLI-STS | 0.8400 |
KR-SBERT-V40K-NLI-STS | 0.8400 |
KR-SBERT-V40K-NLI-augSTS | 0.8511 |
KR-SBERT-V40K-klueNLI-augSTS | 0.8628 |
Citation
@misc{kr-sbert,
author = {Park, Suzi and Hyopil Shin},
title = {KR-SBERT: A Pre-trained Korean-specific Sentence-BERT model},
year = {2021},
publisher = {GitHub},
journal = {GitHub repository},
howpublished = {\url{https://github.com/snunlp/KR-SBERT}}
}