Suparious's picture
Added base_model tag in README.md
8d7c49e verified
---
base_model: teknium/OpenHermes-2.5-Mistral-7B
tags:
- finetuned
- quantized
- 4-bit
- AWQ
- transformers
- pytorch
- mistral
- instruct
- text-generation
- conversational
- license:apache-2.0
- autotrain_compatible
- endpoints_compatible
- text-generation-inference
- region:us
- finetune
- chatml
- DPO
- RLHF
- gpt4
- synthetic data
- distillation
model-index:
- name: Nous-Hermes-2-Mistral-7B-DPO
results: []
datasets:
- teknium/OpenHermes-2.5
license: apache-2.0
language:
- en
quantized_by: Suparious
pipeline_tag: text-generation
model_creator: NousResearch
model_name: Nous Hermes 2 - Mistral 7B - DPO
inference: false
prompt_template: '<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
'
---
# Nous Hermes 2 - Mistral 7B - DPO
- Model creator: [NousResearch](https://huggingface.co/NousResearch)
- Original model: [OpenHermes Mistral 2.5 7B DPO](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B)
The model prior to DPO was trained on 1,000,000 instructions/chats of GPT-4 quality or better, primarily synthetic data as well as other high quality datasets, available from the repository [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5).
```plaintext
@misc{Nous-Hermes-2-Mistral-7B-DPO,
url={[https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO](https://huggingface.co/NousResearch/Nous-Hermes-2-Mistral-7B-DPO)},
title={Nous Hermes 2 Mistral 7B DPO},
author={"Teknium", "theemozilla", "karan4d", "huemin_art"}
}
```
![image/png](https://cdn-uploads.huggingface.co/production/uploads/6317aade83d8d2fd903192d9/PDleZIZK3vE3ATfXRRySv.png)
## Model Description
Nous Hermes 2 on Mistral 7B DPO is the new flagship 7B Hermes! This model was DPO'd from [Teknium/OpenHermes-2.5-Mistral-7B](https://huggingface.co/teknium/OpenHermes-2.5-Mistral-7B) and has improved across the board on all benchmarks tested - AGIEval, BigBench Reasoning, GPT4All, and TruthfulQA.
The model prior to DPO was trained on 1,000,000 instructions/chats of GPT-4 quality or better, primarily synthetic data as well as other high quality datasets, available from the repository [teknium/OpenHermes-2.5](https://huggingface.co/datasets/teknium/OpenHermes-2.5).
## Thank you to FluidStack for sponsoring compute for this model
## How to use
### Install the necessary packages
```bash
pip install --upgrade autoawq autoawq-kernels
```
### Example Python code
```python
from awq import AutoAWQForCausalLM
from transformers import AutoTokenizer, TextStreamer
model_path = "solidrust/Nous-Hermes-2-Mistral-7B-DPO-AWQ"
system_message = "You are Hermes, incarnated a powerful AI."
# Load model
model = AutoAWQForCausalLM.from_quantized(model_path,
fuse_layers=True)
tokenizer = AutoTokenizer.from_pretrained(model_path,
trust_remote_code=True)
streamer = TextStreamer(tokenizer,
skip_prompt=True,
skip_special_tokens=True)
# Convert prompt to tokens
prompt_template = """\
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant"""
prompt = "You're standing on the surface of the Earth. "\
"You walk one mile south, one mile west and one mile north. "\
"You end up exactly where you started. Where are you?"
tokens = tokenizer(prompt_template.format(system_message=system_message,prompt=prompt),
return_tensors='pt').input_ids.cuda()
# Generate output
generation_output = model.generate(tokens,
streamer=streamer,
max_new_tokens=512)
```
### About AWQ
AWQ is an efficient, accurate and blazing-fast low-bit weight quantization method, currently supporting 4-bit quantization. Compared to GPTQ, it offers faster Transformers-based inference with equivalent or better quality compared to the most commonly used GPTQ settings.
AWQ models are currently supported on Linux and Windows, with NVidia GPUs only. macOS users: please use GGUF models instead.
It is supported by:
- [Text Generation Webui](https://github.com/oobabooga/text-generation-webui) - using Loader: AutoAWQ
- [vLLM](https://github.com/vllm-project/vllm) - version 0.2.2 or later for support for all model types.
- [Hugging Face Text Generation Inference (TGI)](https://github.com/huggingface/text-generation-inference)
- [Transformers](https://huggingface.co/docs/transformers) version 4.35.0 and later, from any code or client that supports Transformers
- [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) - for use from Python code
## Prompt template: ChatML
```plaintext
<|im_start|>system
{system_message}<|im_end|>
<|im_start|>user
{prompt}<|im_end|>
<|im_start|>assistant
```