Spanish
salsapaca-native / README.md
sapinedamo's picture
Create README.md
925f723
|
raw
history blame
2.23 kB
metadata
datasets:
  - bertin-project/alpaca-spanish
language:
  - es
license: apache-2.0
SAlpaca logo

SAlpaca: Spanish + Alpaca

Adapter Description

This adapter was created with the PEFT library and allowed the base model bertin-project/bertin-gpt-j-6B to be fine-tuned on the Spanish Alpaca Dataset by using the method LoRA.

How to use

import torch
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer

peft_model_id = "hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, return_dict=True, load_in_8bit=True, device_map='auto')
# tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
tokenizer = AutoTokenizer.from_pretrained(peft_model_id)

# Load the Lora model
model = PeftModel.from_pretrained(model, peft_model_id)

def gen_conversation(text):
  text = "<SC>instruction: " + text + "\n "
  batch = tokenizer(text, return_tensors='pt')
  with torch.cuda.amp.autocast():
    output_tokens = model.generate(**batch, max_new_tokens=256, eos_token_id=50258, early_stopping = True, temperature=.9)

  print('\n\n', tokenizer.decode(output_tokens[0], skip_special_tokens=False))

text = "hola"

gen_conversation(text)

Resources used

Google Colab machine with the following specifications

Resource logo

Citation

@misc {hackathon-somos-nlp-2023,
    author       = { {Edison Bejarano, Leonardo Bolaños, Santiago Pineda, Nicolay Potes, Daniel Terraza} },
    title        = { SAlpaca },
    year         = 2023,
    url          = { https://huggingface.co/hackathon-somos-nlp-2023/bertin-gpt-j-6B-es-finetuned-salpaca }
    publisher    = { Hugging Face }
}