This is a Japanese+English sentence-BERT model.

日本語+英語用Sentence-BERTモデルです。 日本語のみバージョンと比べて、手元の非公開データセットでは日本語の精度が0.8pt低く、英語STSbenchmarkでは精度が8.3pt高い(Cosine-Similarity Spearmanが79.11%)結果が得られました。

事前学習済みモデルとしてcl-tohoku/bert-base-japanese-whole-word-maskingを利用しました。
推論の実行にはfugashiとipadicが必要です(pip install fugashi ipadic)。

日本語のみバージョンの解説

https://qiita.com/sonoisa/items/1df94d0a98cd4f209051

モデル名を"sonoisa/sentence-bert-base-ja-en-mean-tokens"に書き換えれば、本モデルを利用した挙動になります。

使い方

from transformers import BertJapaneseTokenizer, BertModel
import torch


class SentenceBertJapanese:
    def __init__(self, model_name_or_path, device=None):
        self.tokenizer = BertJapaneseTokenizer.from_pretrained(model_name_or_path)
        self.model = BertModel.from_pretrained(model_name_or_path)
        self.model.eval()

        if device is None:
            device = "cuda" if torch.cuda.is_available() else "cpu"
        self.device = torch.device(device)
        self.model.to(device)

    def _mean_pooling(self, model_output, attention_mask):
        token_embeddings = model_output[0] #First element of model_output contains all token embeddings
        input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float()
        return torch.sum(token_embeddings * input_mask_expanded, 1) / torch.clamp(input_mask_expanded.sum(1), min=1e-9)

    @torch.no_grad()
    def encode(self, sentences, batch_size=8):
        all_embeddings = []
        iterator = range(0, len(sentences), batch_size)
        for batch_idx in iterator:
            batch = sentences[batch_idx:batch_idx + batch_size]

            encoded_input = self.tokenizer.batch_encode_plus(batch, padding="longest", 
                                           truncation=True, return_tensors="pt").to(self.device)
            model_output = self.model(**encoded_input)
            sentence_embeddings = self._mean_pooling(model_output, encoded_input["attention_mask"]).to('cpu')

            all_embeddings.extend(sentence_embeddings)

        # return torch.stack(all_embeddings).numpy()
        return torch.stack(all_embeddings)


MODEL_NAME = "sonoisa/sentence-bert-base-ja-en-mean-tokens"
model = SentenceBertJapanese(MODEL_NAME)

sentences = ["暴走したAI", "暴走した人工知能"]
sentence_embeddings = model.encode(sentences, batch_size=8)

print("Sentence embeddings:", sentence_embeddings)
Downloads last month
99
Safetensors
Model size
111M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.